APEX DATA TO PIs WITHIN 2 DAYS

Francisco Montenegro (ESO/APEX, Chile) Carlos de Breuck (ESO/ALMA, Garching)

SCIOPS 2013. "Working together in support for science"

ESA/ESAC, Madrid. 2013 Sep 12th

Credit: ESO/B. Tafreshi

Old data flow system: disadvantages

• New data flow system: advantages

Challenges for the future

Max-Planck-Institut für Radioastronomie

50%

27%

23%

APEX in a nutshell

Credit: G. Gillet/ESO

- 12-m sub-mm telescope based on ALMA prototype (Vertex)
- Chajnantor plateau @ 5100 m
- Started operations in 2004.
 Commitment till 2015 (likely 2017)
- Mature project:
 - 24-hours operations (3 shifts)
 - Up to 500 h on-sky / month

Sequitor base: San Pedro de Atacama (facilities, night observations)

Chajnantor site: Control room + telescope (morning and afternoon operations)

Little staff distributed in 2 shifts (8 days)

+ 10 service staff (cooks, cleaning, car drivers, maintenance)

Instrumentation: Variety of bolometer cameras & heterodyne instruments Test bed for state-of-the-art instrumentation

Instrumentation: Variety of bolometer cameras & heterodyne instruments Test bed for state-of-the-art instrumentation

Scientific topics:

Swinbank + 2010 Nature 464, 733

Important role for:

- ALMA science preparation
- Herschel / Planck science follow up

APEX data products:

Raw data (Multi Beam FITS) Calibrated data (heterodyne) Metadata (logs, twiki) Quick reduction + scripts

APEX data products:

Raw data (Multi Beam FITS) Calibrated data (heterodyne) Metadata (logs, twiki) Quick reduction + scripts

Data flow:

• Archiving Data Archiving document (C. de Breuck, 2006)

"provides instructions to both the local APEX staff and the Data Flow Operations group in ESO Garching on how to send, archive and distribute APEX data"

- Some rules to comply with ESO archive standards
- Contents/format of archival data packages
- Describes differences among partners
- Establish delivery procedures (USB disks)
 - Total APEX external bandwidth: 1 Mbps

Disadvantages

- One/two shipments per run
- Manual intervention both at APEX and ESO (manpower, mistakes)
- Travel overhead too long
- PI gets data several weeks after observations
- PI cannot interact to decide while observations are going on
- Short time to reduce/publish data before next call

Improvements?

Improvements?

- 2010: Requirements for new procedures
- Aims:
 - Reduce substantially delivery time (weeks to days)
 - Completely automated system
 - Integrated as much as possible into the ESO data flow system
 - Little resources
- Considerations:
 - Data volumes generated (~ 3TB/year and increasing...)
 - Available infrastructure (renewal IP contract, usage of EVALSO)
 - Resources needed (bandwidth, hardware, software)
 - Advice from other LPO observatories
 - Coordination between APEX and ESO Archive staff

Advantages

- One shipment every 24 hours
- Automated transfer: minimum manual intervention
- Implemented with free software (linux, bbcp, MySQL, Python)
- Fast internet connection APEX Santiago Germany
- PI gets data in ~ 2 days in his desk. Propriety period starts
- PI can take decisions before the observing run is finished
- Possibility to get quick results and publication!
- Higher possibility to get more time...
- Community also gets data earlier

But still some challenges...

- Optimize timings
- Face the imminent increase of data volumes (new generation of instruments)
- Debugging procedures

Thank you!