MCMC Coffee More Coffee More Confidence

Jorge Lillo-Box & Adele Plunkett

J. Lillo-Box & A. Plunkett

Evidence Hypothesis

hypothesis "H" given the evidence "E"

Prior probability that the evidence is true

Pick bowl #1 or bowl #2...

...close your eyes...

pick a random cookie from that bowl

J. Lillo-Box & A. Plunkett

Evidence: you picked a plain cookie Hypothesis: you picked the cookie from bowl #1

Evidence: you picked a plain cookie Hypothesis: you picked the cookie from bowl #1

Statistics are useful (and critical in science)!

Large datasets

Non-ideal instrumentation

Need for more precise data

Need to get the most out of our data

Statistics are useful (and critical in science)!

An example: the DAnCe project

KPNO/Mosaic1 Subaru/SuprimeCam CFHT/CFHT12K UKIRT/WFCAM CTIO/MOSAIC2 CFHT/MegaCam INT/WFC CFHT/UH8K KPNO/NEWFIRM

3.35x10⁶ sources studied

J. Lillo-Box & A. Plunkett

Statistics are useful (and critical in science)!

An example: the DAnCe project

Foreground sources

Reddened sources

J. Lillo-Box & A. Plunkett

Statistics is just a tool for **extracting knwoledge from our data**

Interpreting the conclusions and validity of the results **needs human interaction**

J. Lillo-Box & A. Plunkett

US spending on science, space, and technology correlates with

Suicides by hanging, strangulation and suffocation

tylervigen.com

J. Lillo-Box & A. Plunkett

For example...

Number of people who drowned by falling into a pool correlates with Films Nicolas Cage appeared in

For example...

J. Lillo-Box & A. Plunkett

(At least) the **basic theory** of statistics

$$P(H|E) = \frac{P(E|H) \times P(H)}{P(E)}$$

e.g

(At least) the **basic theory** of statistics

$$P(H|E) = \frac{P(E|H) \times P(H)}{P(E)}$$

The statistic tools to apply to our data

J. Lillo-Box & A. Plunkett

(At least) the **basic theory** of statistics The **statistic tools** to apply to our data How to **decide** which tool/s should be applied Model minesionality Model (Mines) (Model Mines) (Mines) (

J. Lillo-Box & A. Plunkett

Clustering

(At least) the **basic theory** of statistics

The statistic tools to apply to our data

How to **decide** which tool/s should be applied

How to **compare** the results obtained from the different tools

J. Lillo-Box & A. Plunkett

(At least) the **basic theory** of statistics

The statistic tools to apply to our data

How to **decide** which tool/s should be applied

How to **compare** the results obtained from the different tools

How to **interpret** the results from our statistical analysis

J. Lillo-Box & A. Plunkett

Philosophy of the MCMC Coffee

Ideal paper outline (advice by E. Feigelson)

- 1. Introduction
- 2. Observations and data reduction
- 3. Non-parametric exploration of my data
- 4. Maximum likelihood analysis
- Bayesian analysis
 (aka, include priors and see what happens)
- 6. Model comparison
- 7. Scientific discussion

Wrong use of statistical techniques (and overuse of unefficient but popular tools)

- K-S test —> Anderson-Darling test
- Overuse of histograms for inference (e.g., fit a gaussian to a histogram to get the median...).
- Overuse of linear and power-law regressions —> use local regressions!
- Underuse of poisson regression
- Insufficient examination of regression results: R², analysis of the residuals, autocorrelation, outliers via Cook distance, etc.

- Overuse of Bayesian inference with uninformative priors (that's MLE!) —> Just use Bayesian inference when you have informative priors.
- Underuse of machine learning methods.

Format of the sessions

- i. Quick overview of the scientific context
- ii. Statistical challenge: question you want to answer
- iii. Technique/s used and reasons for not using other.
- iv. Present the **code** and final solution that you found

MCMC Coffee website

http://www.sc.eso.org/~jlillobo/mcmc_coffee/index.html

J. Lillo-Box & A. Plunkett

Thank you!