Bayesian Inference 2: Bayesian Model Selection

Blake Pantoja MCMC Coffee, Episode 7

Material Reference:
Statistics, Data Mining, and Machine Learning in
Astronomy
Željko Ivezić, Andrew J. Connolly, Jacob T. VanderPlas \& Alexander Gray

From Last Time

The Bayes' theorem

Bayes' rule is not controversial

The frequentist vs. Bayesian controversy sets in when we apply Bayes' rule to the likelihood function $p(D \mid M)$ to obtain Bayes' theorem:

An "improved belief" is proportional to the product of an "initial belief" and the probability that the "initial belief" generated the observed data.

Odds Ratio

- Before we assumed model to be true. What if we can't?
- We consider the odds ratio between two different models we consider

$$
O_{21} \equiv \frac{p\left(M_{2} \mid D, I\right)}{p\left(M_{1} \mid D, I\right)} .
$$

Evidence and Posterior Probability

- We can integrate over model parameter space snanned bv theta

$$
E(M) \equiv p(D \mid M, I)=\int p(D \mid M, \theta, I) p(\theta \mid M, I) d \theta
$$

- ^ Evidence or global likehood
- Evidence != data. From physics literature
- With this and prior probability of model, we can get the posterior probability of model M given data D
- These are probabilities, not PDFs!

$$
p(M \mid D, I)=\frac{p(D \mid M, I) p(M \mid I)}{p(D \mid I)},
$$

Bayes Factor

- Hardest term to calculate: $\mathrm{p}(\mathrm{D} \mid \mathrm{I})$. Drops out though:

$$
O_{21}=\frac{E\left(M_{2}\right) p\left(M_{2} \mid I\right)}{E\left(M_{1}\right) p\left(M_{1} \mid I\right)}=B_{21} \frac{p\left(M_{2} \mid I\right)}{p\left(M_{1} \mid I\right)} .
$$

- B21 is the Bayes factor

$$
B_{21}=\frac{\int p\left(D \mid M_{2}, \boldsymbol{\theta}_{2}, I\right) p\left(\boldsymbol{\theta}_{2} \mid M_{2}, I\right) d \boldsymbol{\theta}_{2}}{\int p\left(D \mid M_{1}, \boldsymbol{\theta}_{1}, I\right) p\left(\boldsymbol{\theta}_{1} \mid M_{1}, I\right) d \boldsymbol{\theta}_{1}} .
$$

- Theta1 and Theta2 can be very different parameter spaces

Interpreting the Odds Ratio

O21 > 100 : Decisive (100x M2 is more probable than M1)

- O21 > 10 : Strong
- O21 > 3 : Can't say much

Example: Coin Toss

- M1: known heads probability of b*
- prior is del(b-b*)
- Binomial dist:

$$
\begin{gathered}
p(k \mid b, N)=\frac{N!}{k!(N-k)!} b^{k}(1-b)^{N-k} \\
O_{21}=\int_{0}^{1}\left(\frac{b}{b_{*}}\right)^{k}\left(\frac{1-b}{1-b_{*}}\right)^{N-k} d b .
\end{gathered}
$$

- M2: b unknown. Uniform prior in 0-1 range
- O21 = sqrt(pi/(2N)), k = b*N, b=0.5
- $\mathrm{N}=10000$ needed for 1\% precision with odds 1/80 for O21

$\mathrm{b}^{*}=0.5$ (fair) and $\mathrm{b}^{*}=0.1$.
If $\mathrm{k} / \mathrm{N}=0.1, \mathrm{O} 21$ is ~ 9 for $\mathrm{N}=10$,
O21 ~ 263 for $\mathrm{N}=20$
lif $b^{*}=k / N$ and $b^{*}=0.5$ we need $N>157$ for strong evidence
$\mathrm{N}=10000$ needed for 1% precision with odds
$1 / 80$

Hypothesis Testing

- In classical, we reject a null hypothesis based on confidence intervals
- In Bayesian, we cannot reject without alternate hypothesis!
- Let's consider $p(M 1)+p(M 2)=1$. 1 1 is "null" hypothesis
- Equal priors:

$$
O_{21}=B_{21}=\frac{p\left(D \mid M_{1}\right)}{p\left(D \mid M_{2}\right)}
$$

- For coin, let's say that $k=16$ heads out of $N=20$ tries
- If sigma=2.24, it is $2.7 *$ sig away, above 0.05 confidence interval leading us to reject.
- In Bayesian, we have alternate hypothesis that there is an unknown probability
- By comparing, we can O21 of 10 in favor of an unfair coin

Occam's Razor

- Choose the simplest model in fair agreement with data
- Let's say prior pdf is flat in range:

$$
-\Delta_{\mu} / 2<\mu<\Delta_{\mu} / 2, \text { and thus } p(\mu \mid I)=1 / \Delta_{\mu} .
$$

- Data is more informative than prior when sigma_mu << Delta for Gaussian data with width sigma_mu
- Global likelihood:

$$
E(M) \approx \sqrt{2 \pi} L^{0}(M) \frac{\sigma_{\mu}}{\Delta_{\mu}} .
$$

- E<<LO when sigma_mu << Delta_mu

Occam's Razor

- Each parameter has a multiplicative penalty proportional to sigma/Delta, where sigma ~ Delta gives no penality (unconstrained)
- The odds ratio can justify an additional parameter if the penalty is offset a larger maximum likelihood LO or by prior model probability ratio $p(\mathrm{M} 2 \mid I) / p(\mathrm{M} 1 \mid I)$

Occam's Razor

- For coin flip example from what we had before:

$$
O_{21}=\frac{E\left(M_{2}\right)}{E\left(M_{1}\right)} \approx \sqrt{2 \pi} \sigma_{b}\left(\frac{b^{0}}{b_{*}}\right)^{k}\left(\frac{1-b^{0}}{1-b_{*}}\right)^{N-k},
$$

As M2 has a free parameter, we can see its favor decrease with posterior PDF width (sigma)

- It increases if b0 is far from b*

