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MCMC Coffee - Season 1
Introductory sessions

01/09/2016 Jorge Lillo-Box Descriptive statistics 3.1 to 3.3

15/09/2016 Daniel Asmus
Central limit theorem + correlation 

coefficients
3.4 to 3.6

29/09/2016 Bruno Dias
MLE 1 (general idea, goodness of fit, 

confidence estimates)
4.2 to 4.5

06/10/2016
MLE 2 (hypothesis testing, model comparison, 

non-parametric analysis)
4.6 to 4.8

27/10/2016 Bayesian Inference 1 (Bayes theorem, priors) 5.1 to 5.2

10/11/2016 Bayesian Inference 2 (model selection) 5.3 to 5.5

24/11/2016
MCMC methods (sampling the posterior 

distribution)
5.8
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Random variables

“A variable whose value results from the 
measurement of a quantity that is subject to 
random variations”

e.g.: bias level in a CCD, flux of a 
star, radial velocity

Probability density function (pdf):

“Probability value ascribed to each 
outcome of the random variable.”

Random variable:

Associated with univariative 
distributions (uniform, Gaussian, 
binomial, gamma, etc.)



Random variables

Transformation of random variables

Be careful! Properties are not always preserved



Population vs. Sample statistics

Population: can be 
described by a 
distribution function f(x)

Sample: a finite number 
of measurements

E.g.: the bias level of a 
CCD with 1024x1024 
pixels 

E.g.: a subsample of the 
CCD of 20x20 pixels



Population vs. Sample statistics

How large has to be my sample to 
properly represent the population?

What does “properly represent” mean?

How do you describe a population?  
How do you describe a sample?

What are the typical shapes of the 
population distributions?
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Properties defining a population

Income distribution in Spain

Income per person per year (€)
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True values vs. Estimators

population

sample

µ x

µ,�

x̂, s

Estimators are characterized 
by a bias and a variance

^

MSE = V + bias2

Consistent estimator: bias,V 0N 8



True values vs. Estimators
How large a sample is required 
to obtain a given accuracy in 

our estimator?
What is a good estimator?

Ideal case: subsample drawn 
from a  Gaussian distribution

�median = 1.25�mean

Real case: real data

The mean is  more efficient 
than the median

The interquartile (q75-q25) is a 
more robust estimator of the 

scale parameter

Outliers make the median a 
much more efficient estimator 

of the location

�G = 0.7413(q75 � q25)

(efficiency)



Summary

Statistics is about dealing with random variables and 
describing their probability distributions

Statistics is about trying to inferr the true values of a 
population from estimators of a given sample

Describing a population/sample consists of providing a 
location (mean, median, mode) and a scale parameter 
(variance, skewness, kurtosis).

Samples are decribed by estimators. Their election is critical 
to accurately inferr the population properties



Suggested topics for the near future…

•Selection of priors 

•Periodograms 

•Interpreting the posterior probability 

•Properly presenting your MCMC results 

•Histograms (bin width selection) 

•Kernel density estimators 

•Computing the evidence from MCMC chains 

•Model comparisson 

•Noise colors (red noise, white noise, etc.)



Univariative distributions

• Uniform 
• Gaussian 
• Binomial 
• Poisson 
• Chi-square 
• Beta 
• Fischer 
• Gamma 
• …



Univariative distributions

constrained values.  
e.g.: date of birth {0,365}

• Uniform 
• Gaussian 
• Binomial 
• Poisson 
• Chi-square 
• Beta 
• Fischer 
• Gamma 
• …



Univariative distributions

The number of particles whose 
velocity lies between x and x + dx 

is a gaussian distribution

• Uniform 
• Gaussian 
• Binomial 
• Poisson 
• Chi-square 
• Beta 
• Fischer 
• Gamma 
• …



Univariative distributions

x can just take discrete values 
(integers). e.g.: flipping a coin 

{heads,tails}

• Uniform 
• Gaussian 
• Binomial 
• Poisson 
• Chi-square 
• Beta 
• Fischer 
• Gamma 
• …



Univariative distributions

e.g.: the distribution of the 
number of photons counted in a 

time interval.

• Uniform 
• Gaussian 
• Binomial 
• Poisson 
• Chi-square 
• Beta 
• Fischer 
• Gamma 
• …
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