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4.6 Hypothesis testing

- Statistics language: “Whether a value x, or the whole set {x,}, is
consistent with being drawn from a Gaussian distribution
Nu,o).” (ICVG p. 144)

- Astronomy example: Source detection or background noise?

- Astronomy example in statistics language: “Here, the null
hypothesis is that the measured brightness in a given resolution
element is due to background, and when we can reject it, we have

a source detection.” (ICVG p. 144)

ko S S
© 90 o gove, L) s
oo @: o il 2 %
@ .e o .‘o f
° . .00 ®
0° °
X 288" o
& G.Oo,"o &
‘ae & e@ ... i
°




P-value

- Statisticians warning: If you “fail” to reject the hypothesis
(i.e. you are not sure of your detection), it does not mean

that we prove its correctness. Maybe the sample is just
not large enough.

J Example: In [8): #Flip a coin 10 times: how do we know is it "fair"?
np.random.randint(2,size=10)

OQut(8): array((i, 1, 1,1,60, 90, 1, 1, 1, 1])



In [18]:

#We got 8 tails! Seems unfair. But, we expect to get 8 heads less than 5.48% of the time!

#At this rate, we cannot reject the "null"” (that the coin is indeed fair) at better than (the typical) 0.05 level
#We need more coin flips.

#Flip a coin 100x10 times to test: is it "fair"?

#Reject the "null" (the coin is fair) only if we get

flipcoin = np.random.randint(2,size=(1le2,10))

sumrows = np.sum(flipcoin,axis=1)

print( 'Mean number of heads: {}'.format(np.mean(sumrows)))

print( 'How many times were there 8 heads? {}'.format(np.size(sumrows[sumrows == 8])))

#for 1 in np.arange(sumrows.size): print(flipcoin[i],sumrows[i])

Mean number of heads: 5.12
How many times were there 8 heads? 9




In [18]:

#We got 8 tails! Seems unfair. But, we expect to get 8 heads less than 5.48% of the time!

#At this rate, we cannot reject the "null"” (that the coin is indeed fair) at better than (the typical) 0.05 level
#We need more coin flips.

#Flip a coin 100x10 times to test: is it "fair"?

#Reject the "null" (the coin is fair) only if we get

flipcoin = np.random.randint(2,size=(1le2,10))

sumrows = np.sum(flipcoin,axis=1)

print('Mean number of heads: {}'.format(np.mean(sumrows)))

print('How many times were there 8 heads? {}'.format(np.size(sumrows[sumrows == 8])))

#for 1 in np.arange(sumrows.size): print(flipcoin[i],sumrows[i])

In [17]:

from scipy import stats

dist = stats.binom(10,0.5) #N=10,b=0.5 (e.g. coin is fair)

r = dist.rvs(10) #the outcome of 10 random flips

p = dist.cdf(7) #probability to get >7 heads, k=8,9,orl0 successes

print('Probability to get >=8 heads: {}'.format(l.-p))

#PLOT

X = np.arange(-1, 200)

fig, ax = plt.subplots(figsize=(5, 3.75))

plt.plot(x, dist.pmf(x), 1ls='-', c='black', label=r'$b=%.1f,\ n=%i$' %(0.5,10), linestyle='steps-mid')

plt.x1lim(-0.5, 12)
plt.ylim(0, 0.25)

plt.xlabel('$x$')
plt.ylabel(r's$p(x|b, n)$"')
plt.title('Binomial Distribution')

plt.legend()
plt.show()

Probability to get >=8 heads: 0.0546875
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.
A few “hypothetical” cases (ICVG)

- Care about false negatives:

- If null hypothesis is “this undergrad student would do great in grad
school”

- else if we reject a good student (false negative), ®
- else if we accept a bad student (false positive), no big deal ©

- Care about false positives:
- If null hypothesis is “my parachute is good”

- else if it's bad, but we accept it as good (false positive) == disaster ®
- else if it's good, but we reject it as bad, fine ©



4.7 Comparison of distributions

- Statistics language:

- “...whether two samples are drawn from the same distribution...”

- “...whether two sets of measurements imply a difference in the measured
quantity.”

- “...whether a sample is consistent with being drawn from some known

distribution.” (ICVG p. 149)

- Astronomy example: Measure the mass of the same planet/
galaxy/whatever using two methods (with different
measurement errors). Do the measured masses agree?



Regression toward the mean

The psychologist Daniel Kahneman, winner of the 2002 Nobel prize in
economics, pointed out that regression to the mean might explain why rebukes
can seem to improve performance, while praise seems to backfire. (Wikipedia)

| had the most satisfying Eureka experience of my career
while attempting to teach flight instructors that praise is more effective than
punishment for promoting skill-learning. When | had finished my enthusiastic
speech, one of the most seasoned instructors in the audience raised his hand
... He said, “On many occasions | have praised flight cadets for clean execution
of some aerobatic maneuver, and in general when they try it again, they do
worse. On the other hand, | have often screamed at cadets for bad execution,
and in general they do better the next time. So please don't tell us that
reinforcement works and punishment does not, because the opposite is the
case.” This was a joyous moment, in which | understood an important truth
about the world: because we tend to reward others when they do well and
punish them when they do badly, and because there is regression to the mean,

it is part of the human condition that we are statistically punished for rewarding
others and rewarded for punishing them.



Regression toward the mean
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Regression toward the mean

If two instances of a data set {x;} are drawn from some distribution, the mean
difference between the matched values (i.e., the ith value from the first set and the
ith value from the second set) will be zero. However, if we use one data set to select
a subsample for comparison, the mean difference may become biased. For example,
if we subselect the lowest quartile from the first data set, then the mean difference
between the second and the first data set will be larger than zero. (ICVG p. 150)

- Examples:

- Sir Francis Galton, 19t Century: “offspring of parents who lie at the tails of

the distribution will tend to lie closer to the centre, the mean, of the
distribution” (wikipedia)

- Measuring the impact after efforts to improve students’ test scores (ICVG)

- Financial time series “returns can be very unstable in the short run but
very stable in the long run” (wikipedia)

- Astronomical site testing (ICVG)

- Takeaway: When comparing models, make a randomly selected
sample to detect a possible difference.



4.8 Non-parametric analysis

Bell-shaped, Nurnber of holes
or Normal'

distribution
k

Distance from center

Parametric tests (means)

Nonparametric tests (medians)

1-sample t test
N>20

1-sample Sign, 1-sample Wilcoxon

2-sample t test
N(per group)>15

Mann-Whitney test

One-Way ANOVA

Kruskal-Wallis, Mood’s median test

Factorial DOE with one factor and one blocking
variable

Friedman test

Reasons to Use
Nonparametric Tests

Reason 1: Your area of study
is better represented by the
median (example: income with
some billionaire outliers)

Reason 2: You have a small
sample size (but parametric
has more “statistical power”)

Reason 3: You have ordinal
non-continuous data, ranked
data, or outliers that you can't
remove

http://blog.minitab.com/blog/adventures-in-statistics/choosing-between-a-nonparametric-

test-and-a-parametric-test



Parametric vs. non-parametric

Parametric Non-pwetric
Assumed distribution Normal <L Any >
Assumed variance Homogeneous Any
Typical data Ratio or Interval Ordinal or Nominal
Data set relationships Independent Any
Usual central measure Mean Median

Benefits Can draw more conclusions Simplicity; Less affected by outliers
Tests
Choosing Choosing parametric test Choosing a non-parametric test

Correlation test

Pearson

Spearman

Independent measures, 2 groups

Independent-measures t-test

Mann-Whitney test

Independent measures, >2 groups

One-way, independent-measures ANOVA

Kruskal-Wallis test

Repeated measures, 2 conditions

Matched-pair t-test

Wilcoxon test

Repeated measures, >2 conditions

One-way, repeated measures ANOVA

Friedman's test

http://changingminds.org/explanations/
research/analysis/parametric_non-

parametric.htm




Now a few examples (from ICVG 4.7)

- Anderson-Darling

- Kolmogorov-Smirnov
- Shapiro-Wilk

- U test

- Wilcoxon test

- F-test
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Anderson-Darling, K-S, Shapiro-Wilk tests
Is the distribution Gaussian?

TABLE 4.1.
The values of the Anderson-Darling statistic A* corresponding to significance level p.

wand o fromdata? p=0.05 p=0.01

[ MO, 0 NO 2.49 3.86
/L Yes, o0 no 1.11 1.57
[ NO, O yes 2.32 3.69
JL yes, O yes 0.79 1.09

## Anderson-Darling test

## Test whether the distribution is gaussian

N=le3

X = np.random.normal(0,1,size=N)

A, crit, sig = stats.anderson(x, 'norm')

print( 'Anderson-Darling {}'.format(A))

## K-S Test

D, pD = stats.kstest(vals[i], "norm")

print('K-S Test {}'.format(D))

## Shapiro-Wilk (sensitive to outliers in the Gaussian tails)
sl, s2 = stats.shapiro(x)

print('Shapiro-Wilk {}'.format(sl)) #Value close to 1 means Gaussian



U test and Wilcoxon test
Test “locations” of distributions

## U test, or Mann-Whitney-Wilcoxon, or Wilcoxon Rank-sum test

## Test whether 2 data sets are drawn from distributions with different location parameters
## i.e. different mean, same shape

## If known to be Gaussian, the test is called t test.

## i.e. different mu, same sigma

import numpy as np

from scipy import stats

N = le3

#x,y = np.random.normal(0,1,size=(2,N))

X= np.random.normal(0,1,size=N)

y= np.random.normal 0,1,size=led)

Tu, Pu = stats.mannwhitneyu(x,y)

print(Tu,Pu) #reutrns Mann-whitney statistics, one-sided p-value
print('compare with NIN2/2: {}'.format(N*N/2))

## If result is similar to NIN2/2, these draw from same distribution
t,p = stats.ttest_ind(x,y)

print(t,p) #returns t-statistic, two-tailed p-value

## Wilcoxon signed-rank test

## Compare means of 2 distributions, i.e. measure "before" and "after"
N=le3

X,y = np.random.normal 0,1,size=(2,N) & Sagme size distributions

Tw,pw = stats.wilcoxon(x,y)

print(Tw,pw)



F-test
Compare the variances

## F test

## Compare variances of two samples
N=le3

X,y = np.random.normal(0,1,size=(2,N))
F,pf = stats.f_oneway(x,y)

print(F,pf)



Histograms, how to do them “right”

- “simplest non-parametric method to analyze 1D
data” (ICVG p. 163)

- Bin width is the important tuning parameter
- More data, more bins: fewer data, fewer bins

Bin width:
’ 3.5
- Scott's rule A, = N—,Z
- Generalized to non-Gaussian distributions,

Freedman-Diaconis rule: 2(grs — q2s)  2.70¢
Ab — — .
N3 NU/3




Histogram examples

## SIMPLE HISTOGRAM

N=le3

X = np.random.normal(size=N)

counts, bins = np.histogram(x,bins=50) #for computing, but not plotting a histogram
plt.hist(x,bins=bins) #for plotting a histogram

## For choosing bin-widths
from astroML.plotting import hist
hist(x, bins='freedman',color='green') #or 'knuth' or 'scott'
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Summary of tools

- from scipy import stats

Note: For many more stat related functions install the
software R and the interface package rpy.

- Look at book figures:
http://www.astroml.org/book figures/index.html

- from astroML.plotting import hist

- https://github.com/adeleplunkett/MCMC/blob/master/
161006_MLE2 Adele.ipynb



