Mid-Infrared Variability in Binary Brown Dwarfs

Michael F. Sterzik (ESO, Santiago de Chile) Kerstin Geissler (MPIA, Heidelberg) Gael Chauvin (LAOG, Grenoble) Eric Pantin (CEA, Saclay)

Ground-based MIR photometry of binary stars/b.d. systems

- spatial resolution < 2"
- precise relative photometry (<5%)
- good absolute photometry (<20%) constrain Teff and Lbol
- discriminate atmospheric models

The case of ϵ Ind B

- SPITZER IRS from Roelling, 2004:
- Matches cloudless combo of Saumon, Marley, Lodders (2003)
- T_{Bb} = 800K and T_{Ba} = 1200K
- NH3 absorption @ 10.5 µm

BUT:

- McCaughrean et al., 2004, AO assisted H-band R=1000 spectroscopy: T_{Bb} = 835K \ldots 875K and T_{Ba} = 1238K \ldots 1312K (0.8…2Gyr)

- Smith et al., 2003, combo R=50000, compared with Tsuji (2002) : $T_B \approx 1500 K$

- MIR model spectra differ: Allard/Burrows/Saumon/Helling ...
- T_{Ba} is a tough one! (L/T transition: settling?, cond?, non-equilibrium chem?)

- if T_{Ba} hot, then problems with its radius ...

Roelling et al., 2004

VISIR - VLT Imager and Spectrometer for mid-IR

- diffraction limited (0.3" resolution)
- high sensitivity N-band imaging (5mJy 10σ /hr)
- 11 narrow N band filters
- long slit R=350/3000/25000 spectroscopy
- queue (service) and visitor mode
- reduction pipeline

VISIR under the Cassegrain Focus of the 8.2-m VLT Melipal Telescope

ESO PR Photo 16a/04 (12 May 2004)

© European Southern Observatory

The case of ϵ Ind B

Sterzik et al., 2004

Wednesday, August 12, 2009

ε Indi B and Burrows, Sudarsky, Hubeny (2006) model

GJ 229

dist ~ 6pc sep. 7".7 SpTy T7 T~1000K age 30-200 Myrs

HR 7329

dist ~ 50pc sep. 4".2 SpTy M7-M8 T~2600K age I2 Myrs

HD 130948

GJ 229

dist ~ 6pc sep. 7".7 SpTy T7 T~1000K age 30-200 Myrs

HR 7329

dist ~ 50pc sep. 4".2 SpTy M7-M8 T~2600K age I2 Myrs

Geissler, Chauvin & Sterzik, 2008

HD 130948

GJ 229

dist ~ 6pc sep. 7".7 SpTy T7 T~1000K age 30-200 Myrs

HR 7329

dist ~ 50pc sep. 4".2 SpTy M7-M8 T~2600K age I2 Myrs

 λ
 8.6μ
 10.5μ
 11.3μ

 mJy
 3.2(0.5)
 <3.2</th>
 <6.7</th>

λ	8.6µ	10.5µ	ΙΙ.3μ
mJy	3.2(2.3)	<1.9	<2.9

Geissler, Chauvin & Sterzik, 2008

HD 130948

GJ 229

dist ~ 6pc sep. 7".7 SpTy T7 T~1000K age 30-200 Myrs

HR 7329

dist ~ 50pc sep. 4".2 SpTy M7-M8 T~2600K age I2 Myrs

λ	8.6µ	10.5µ	ΙΙ. 3 μ
mJy	3.2(0.5)	<3.2	<6.7

λ	8.6µ	10.5µ	II.3µ
mJy	3.2(2.3)	<1.9	<2.9

Geissler, Chauvin & Sterzik, 2008

HD 130948

Comparison w/ atm. models (GJ229)

Comparison w/ atm. models (GJ229)

GJ229B	AMES - cond T=900K t=200Myr	L&T cloud free T=900K t=200Myr
PAHI (3.2+-0.5 mJy)	3.3	3.4
Siv (<3.2 mJy)	3.0	3.0
PAH2 (<6.7mJy)	5.I	4.3

HDI30948BC	AMES - dusty T=1900K t=300Myr	L&T cloudy T=1900K t=300Myr
PAHI (I.9+-0.4 mJy)	2.1	I.5
Siv (2.9+-0.4 / < I.6 mJy)	1.6	I.3
PAH2 (<1.2mJy)	I.4	I.2

Variability in B.D.s

The Quest for Weather: Silicates, Methane, Ammonia, CO L/T transition: cloudy/clear...

THE ASTROPHYSICAL JOURNAL, 653:1454–1463, 2006 December 20 Copyright is not claimed for this article. Printed in U.S.A.

A SENSITIVE SEARCH FOR VARIABILITY IN LATE L DWARFS: THE QUEST FOR WEATHER

M. MORALES-CALDERÓN,^{1,2} J. R. STAUFFER,³ J. DAVY KIRKPATRICK,⁴ S. CAREY,³ C. R. GELINO,³ D. BARRADO Y NAVASCUÉS,¹ L. REBULL,³ P. LOWRANCE,³ M. S. MARLEY,⁵ D. CHARBONNEAU,^{6,7} B. M. PATTEN,⁶ S. T. MEGEATH,⁶ AND D. BUZASI⁸ Received 2006 June 2; accepted 2006 July 21

A&A 487, 277–292 (2008) DOI: 10.1051/0004-6361:20065075 © ESO 2008

CLOUDS search for variability in brown dwarf atmospheres

Infrared spectroscopic time series of L/T transition brown dwarfs*

B. Goldman^{1,2}, M. C. Cushing^{3,**}, M. S. Marley⁴, É. Artigau⁵, K. S. Baliyan⁶, V. J. S. Béjar⁷, J. A. Caballero^{2,8}, N. Chanover¹, M. Connelley⁹, R. Doyon¹⁰, T. Forveille^{11,12}, S. Ganesh⁶, C. R. Gelino^{1,13}, H. B. Hammel¹⁴, J. Holtzman¹, S. Joshi¹⁵, U. C. Joshi⁶, S. K. Leggett¹⁶, M. C. Liu⁹, E. L. Martín⁸, V. Mohan¹⁷, D. Nadeau¹⁰, R. Sagar¹⁵, and D. Stephens¹⁸

Variability in B.D.s @ 10.5µ L/T transition: cloudy/clear... non-equilibrium chemistry / vertical mixing heterogenity of cloud patterns: Silicates, Ammonia, CO

Hubeny & Burrows, 2007, ApJ669

Systematic Monitoring of HD 130948

Systematic Monitoring of HD 130948

- X² analysis (Morales-Calderon et al.)
- η (Enoch et al. 2003, statistically more robust)

	Х2	P	η
HD 130948 PAH1	1.8	0.99	0.4
HD 130948 SIV	5.5	0.59	0.7

Geissler et al., Cool Stars

- X² analysis (Morales-Calderon et al.)
- η (Enoch et al. 2003, statistically more robust)

Geissler et al., Cool Stars

Systematic Monitoring of ϵ Ind B

25/Aug/05

9/Sep/05

2/Oct/04

incl time series data from 2007 Photometric errors systematically measured through simulated sources

Systematic Monitoring of ϵ Ind B

	X2	Р	η
ε Ind Ba PAH2	40	I 0 ⁻⁷	3.1
ε Ind Ba SIV	20	10-3	2.1
ε Ind Bb PAH2	15	10-2	1.8
ε Ind Bb SIV	9	10 ⁻¹	I.4

	X2	Р	η
ε Ind Ba PAH2	40	10-7	3.I
ε Ind Ba SIV	20	10-3	2.1
ε Ind Bb PAH2	15	10 ⁻²	H2 and SIV
ε Ind Bb SIVE Ind Bb	unlikely va	10-1	L.1 H2 18 SIV I.4

Sterzik et al., in prep.