Mid-Infrared Variability in Binary Brown Dwarfs

Michael F. Sterzik (ESO, Santiago de Chile)
Kerstin Geissler (MPIA, Heidelberg)
Gael Chauvin (LAOG, Grenoble)
Eric Pantin (CEA, Saclay)
Ground-based MIR photometry of binary stars/b.d. systems

- spatial resolution < 2"

- precise relative photometry (<5%)

- good absolute photometry (<20%) constrain Teff and Lbol

- discriminate atmospheric models
The case of ε Ind B

- SPITZER IRS from Roelling, 2004:
 - $T_{bb} = 800K$ and $T_{ba} = 1200K$
 - NH3 absorption @ 10.5 μm

BUT:

- McCaughrean et al., 2004, AO assisted H-band R=1000 spectroscopy: $T_{bb} = 835K ... 875K$ and $T_{ba} = 1238K ... 1312K$ (0.8...2Gyr)
- Smith et al., 2003, combo R=50000, compared with Tsuji (2002) : $T_b \approx 1500K$
- MIR model spectra differ: Allard/Burrows/Saumon/Helling ...
- T_{ba} is a tough one! (L/T transition: settling?, cond?, non-equilibrium chem?)
- if T_{ba} hot, then problems with its radius ...

Roelling et al., 2004
VISIR - VLT Imager and Spectrometer for mid-IR

- diffraction limited (0.3” resolution)
- high sensitivity N-band imaging (5mJy 10σ /hr)
- 11 narrow N band filters
- long slit R=350/3000/25000 spectroscopy
- queue (service) and visitor mode
- reduction pipeline
The case of ε Ind B

Model of the emission spectrum of a 800K brown dwarf (Burrows)

ε Indi (a) and (b) VISIR@VLT/Melipal

(a) 7.4 ± 0.4 mJy
(b) 3.5 ± 0.4 mJy
PAH1 (8.6 μm)

(a) 7.2 ± 0.6 mJy
(b) 3.6 ± 0.8 mJy
SIV (10.5 μm)

(a) 6.8 ± 0.8 mJy
(b) 5.7 ± 2.0 mJy
PAH2 (11.3 μm)

Sterzik et al., 2004
ε Indi B and Burrows, Sudarsky, Hubeny (2006) model

F_v [mJy]

λ [\(\mu\)m]

$T = 800K, 900K$

$T = 1200K, 1300K$
Hubeny & Burrows (2007) models

indication for non-equilibrium atmosphere
Star - Brown Dwarf binaries (8.6μ)

GJ 229
- dist ~ 6pc
- sep. 7".7
- SpTy T7
- T~1000K
- age 30-200 Myrs

HR 7329
- dist ~ 50pc
- sep. 4".2
- SpTy M7-M8
- T~2600K
- age 12 Myrs

HD 130948
- dist ~ 18pc
- sep. 2".6 + 0".13
- SpTy L4+L4
- T~1900K
- age 300-800 Myrs
Star - Brown Dwarf binaries (8.6μ)

GJ 229
- dist ~ 6pc
- sep. 7".7
- SpTy T7
- T~1000K
- age 30-200 Myrs

HR 7329
- dist ~ 50pc
- sep. 4".2
- SpTy M7-M8
- T~2600K
- age 12 Myrs

HD 130948
- dist ~ 18pc
- sep. 2".6 + 0".13
- SpTy L4+L4
- T~1900K
- age 300-800 Myrs

Geissler, Chauvin & Sterzik, 2008
Star - Brown Dwarf binaries (8.6μ)

GJ 229
- dist ~ 6pc
- sep. 7''.7
- SpTy T7
- T~1000K
- age 30-200 Myrs

HR 7329
- dist ~ 50pc
- sep. 4''.2
- SpTy M7-M8
- T~2600K
- age 12 Myrs

HD 130948
- dist ~ 18pc
- sep. 2''.6 + 0''.13
- SpTy L4+L4
- T~1900K
- age 300-800 Myrs

Geissler, Chauvin & Sterzik, 2008
Star - Brown Dwarf binaries (8.6μ)

GJ 229
- dist ~ 6pc
- sep. 7''.7
- SpTy T7
- T~1000K
- age 30-200 Myrs

HR 7329
- dist ~ 50pc
- sep. 4''.2
- SpTy M7-M8
- T~2600K
- age 12 Myrs

HD 130948
- dist ~ 18pc
- sep. 2''.6 + 0''.13
- SpTy L4+L4
- T~1900K
- age 300-800 Myrs

<table>
<thead>
<tr>
<th>λ</th>
<th>8.6μ</th>
<th>10.5μ</th>
<th>11.3μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>jy</td>
<td>3.2(0.5)</td>
<td><3.2</td>
<td><6.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>λ</th>
<th>8.6μ</th>
<th>10.5μ</th>
<th>11.3μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>jy</td>
<td>3.2(2.3)</td>
<td><1.9</td>
<td><2.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>λ</th>
<th>8.6μ</th>
<th>10.5μ</th>
<th>11.3μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>jy</td>
<td>3.8(0.4)</td>
<td>5.7(0.4)</td>
<td><2.4</td>
</tr>
</tbody>
</table>

n.o. <3.2 n.o.

Geissler, Chauvin & Sterzik, 2008
Comparison w/ atm. models (GJ229)

- **GJ229B**
 - Ames - cond
 - $T=900K$, $t=200$ Myr
 - L&L cloud free

- **PAH1 (3.2+-0.5 mJy)**
- **Siv (<3.2 mJy)**
- **PAH2 (<6.7 mJy)**

- **HD130948BC**
 - Ames - dusty
 - $T=1900K$, $t=300$ Myr
 - L&L cloudy

- **PAH1 (1.9+-0.4 mJy)**
- **Siv (<2.9+-0.4 mJy)**
- **PAH2 (<1.2 mJy)**

Wednesday, August 12, 2009
Comparison w/ atm. models (GJ229)

<table>
<thead>
<tr>
<th></th>
<th>AMES - cond T=900K t=200Myr</th>
<th>L&T cloud free T=900K t=200Myr</th>
</tr>
</thead>
<tbody>
<tr>
<td>GJ229B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAH1 (3.2+-0.5 mJy)</td>
<td>3.3</td>
<td>3.4</td>
</tr>
<tr>
<td>Siv (<3.2 mJy)</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>PAH2 (<6.7mJy)</td>
<td>5.1</td>
<td>4.3</td>
</tr>
<tr>
<td>HD130948BC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAH1 (1.9+-0.4 mJy)</td>
<td>2.1</td>
<td>1.5</td>
</tr>
<tr>
<td>Siv (2.9+-0.4 / < 1.6 mJy)</td>
<td>1.6</td>
<td>1.3</td>
</tr>
<tr>
<td>PAH2 (<1.2mJy)</td>
<td>1.4</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Is HD 130948 variable @ 10.5μ?

5/Aug/06

3/Aug/06

simulated

5.7 ± 0.4 mJy

<3.2 (b.l. + 3σ) mJy

sim. source 4 mJy
Is HD 130948 variable @ 10.5μ?

5/Aug/06

3/Aug/06

simulated

5.7 ± 0.4 mJy
Variability in B.D.s

The Quest for Weather: Silicates, Methane, Ammonia, CO
L/T transition: cloudy/clear...

A SENSITIVE SEARCH FOR VARIABILITY IN LATE L DWARFS: THE QUEST FOR WEATHER

M. Morales-Calderón, 1,2 J. R. Stauffer, 1 J. Davy Kirkpatrick, 4 S. Casey, 3 C. R. Gelino, 3
D. Barbado y Navascués, 1 L. Rebull, 2 P. Lowrance, 1 M. S. Marley, 3
D. Charbonneau, 6,7 B. M. Patten, 6 S. T. Megieath, 6 and D. Buzasi 1

Received 2006 June 2; accepted 2006 July 21

CLOUDS search for variability in brown dwarf atmospheres

Infrared spectroscopic time series of L/T transition brown dwarfs*

B. Goldman1,2, M. C. Cushing3, **, M. S. Marley4, É. Artigau5, K. S. Baliyan6, V. J. S. Béjar7, J. A. Caballero7,8,
N. Chanover4, M. Connolley9, R. Doyon10, T. Forveille11,12, S. Ganesh6, C. R. Gelino1,13, H. B. Hammel14,
R. Sagar15, and D. Stephens18
Variability in B.D.s @ 10.5 μm
L/T transition: cloudy/clear...
non-equilibrium chemistry / vertical mixing
heterogeneity of cloud patterns: Silicates, Ammonia, CO

Saumon, Marley & Lodders, 2003

Figure 2.13: Sequence of the March 2008 observations of HD 130948BC in PAH1 and SIV.
Systematic Monitoring of HD 130948

Figure 2.13: Sequence of the March 2008 observations of HD 130948BC in PAH1 and SIV.
Variability Analysis

- χ^2 analysis (Morales-Calderon et al.)
- η (Enoch et al. 2003, statistically more robust)

<table>
<thead>
<tr>
<th></th>
<th>χ^2</th>
<th>P</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD 130948 PAH I</td>
<td>1.8</td>
<td>0.99</td>
<td>0.4</td>
</tr>
<tr>
<td>HD 130948 SIV</td>
<td>5.5</td>
<td>0.59</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Variability Analysis

- χ^2 analysis (Morales-Calderon et al.)
- η (Enoch et al. 2003, statistically more robust)

<table>
<thead>
<tr>
<th></th>
<th>χ^2</th>
<th>P</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD 130948 PAH1</td>
<td>1.8</td>
<td>0.99</td>
<td>0.4</td>
</tr>
<tr>
<td>HD 130948 SIV</td>
<td>5.5</td>
<td>0.59</td>
<td>0.7</td>
</tr>
</tbody>
</table>

HD 130948 likely not variable in PAH1 and SIV!
Systematic Monitoring of ε Ind B

incl time series data from 2007
Photometric errors systematically measured through simulated sources

Wednesday, August 12, 2009
Systematic Monitoring of ε Ind B

Flux [mJy]

Wednesday, August 12, 2009
Variability Analysis

<table>
<thead>
<tr>
<th></th>
<th>χ^2</th>
<th>P</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε Ind Ba PAH2</td>
<td>40</td>
<td>10^{-7}</td>
<td>3.1</td>
</tr>
<tr>
<td>ε Ind Ba SIV</td>
<td>20</td>
<td>10^{-3}</td>
<td>2.1</td>
</tr>
<tr>
<td>ε Ind Bb PAH2</td>
<td>15</td>
<td>10^{-2}</td>
<td>1.8</td>
</tr>
<tr>
<td>ε Ind Bb SIV</td>
<td>9</td>
<td>10^{-1}</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Variability Analysis

<table>
<thead>
<tr>
<th></th>
<th>χ^2</th>
<th>P</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε Ind Ba PAH2</td>
<td>40</td>
<td>10^{-7}</td>
<td>3.1</td>
</tr>
<tr>
<td>ε Ind Ba SIV</td>
<td>20</td>
<td>10^{-3}</td>
<td>2.1</td>
</tr>
<tr>
<td>ε Ind Bb PAH2</td>
<td>15</td>
<td>10^{-2}</td>
<td>1.8</td>
</tr>
<tr>
<td>ε Ind Bb SIV</td>
<td>9</td>
<td>10^{-1}</td>
<td>1.4</td>
</tr>
</tbody>
</table>

ε Ind Bb unlikely variable in PAH2 and SIV.
Variability Analysis

<table>
<thead>
<tr>
<th></th>
<th>χ^2</th>
<th>P</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε Ind Ba PAH2</td>
<td>40</td>
<td>10^{-7}</td>
<td>3.1</td>
</tr>
<tr>
<td>ε Ind Ba SIV</td>
<td>20</td>
<td>10^{-3}</td>
<td>2.1</td>
</tr>
<tr>
<td>ε Ind Bb PAH2</td>
<td>15</td>
<td>10^{-2}</td>
<td>1.8</td>
</tr>
<tr>
<td>ε Ind Bb SIV</td>
<td>9</td>
<td>10^{-1}</td>
<td>1.4</td>
</tr>
</tbody>
</table>

ε Ind Ba *maybe* variable in PAH2 and SIV, tentatively attributed to variable NH$_3$ absorption.

ε Ind Bb unlikely variable in PAH2 and SIV.

Sterzik et al., in prep.