{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Elastic search query"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-29T22:08:19.850891",
"start_time": "2017-05-29T22:08:19.835879"
}
},
"outputs": [],
"source": [
"import requests\n",
"import json\n",
"from elasticsearch import Elasticsearch\n",
"import pandas as pd\n",
"import os\n",
"import numpy as np\n",
"import dateutil"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Just replace servername by the name of the server where the elastic search is running"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"es = Elasticsearch('http://servername:9200', timeout=20.0, bulk_size=100000)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Basic request"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Default size"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-29T22:08:46.358304",
"start_time": "2017-05-29T22:08:46.337841"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"156459 documents found\n"
]
}
],
"source": [
"results = es.search(index=\"asm\", doc_type=\"dimm\")\n",
"print(\"{0:d} documents found\".format(results['hits']['total']))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The result of the search is a dictionary with 4 keys:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-29T22:08:49.793894",
"start_time": "2017-05-29T22:08:49.787134"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"dict_keys(['_shards', 'hits', 'took', 'timed_out'])\n"
]
}
],
"source": [
"print(results.keys())"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-29T22:08:50.816620",
"start_time": "2017-05-29T22:08:50.786747"
}
},
"outputs": [
{
"data": {
"text/plain": [
"4"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"results['took']"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-29T22:08:51.583989",
"start_time": "2017-05-29T22:08:51.576472"
}
},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"results['timed_out']"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-27T03:37:17.084298",
"start_time": "2017-05-27T03:37:17.076817"
}
},
"outputs": [
{
"data": {
"text/plain": [
"{'failed': 0, 'successful': 5, 'total': 5}"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"results['_shards']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The hits is itself a dictionnary with different keys: total, max_score and hits"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-27T03:37:22.254079",
"start_time": "2017-05-27T03:37:22.246286"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"dict_keys(['total', 'max_score', 'hits'])\n",
"10\n"
]
}
],
"source": [
"print(results['hits'].keys())\n",
"print(len(results['hits']['hits']))\n",
"#print(results['hits'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If we look at one of those hits:"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-27T03:37:30.505193",
"start_time": "2017-05-27T03:37:30.494899"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'_id': 'AVxGFXJkj_k52QMFZJII', '_type': 'dimm', '_index': 'asm', '_score': 1.0, '_source': {'@timestamp': '2017-04-28T03:43:16', 'dimm_seeing': 0.527}}\n",
"{'@timestamp': '2017-04-28T03:43:16', 'dimm_seeing': 0.527}\n"
]
}
],
"source": [
"i=2\n",
"print(results['hits']['hits'][i])\n",
"print(results['hits']['hits'][i]['_source'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can turn that into a dataframe"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-27T03:37:52.325598",
"start_time": "2017-05-27T03:37:52.283856"
},
"collapsed": true
},
"outputs": [],
"source": [
"feList={'timestamp':[],'dimm_seeing':[]}\n",
"for r in results['hits']['hits']:\n",
" feList['timestamp'].append(dateutil.parser.parse(r['_source']['@timestamp'], ignoretz=True))\n",
" feList['dimm_seeing'].append(r['_source']['dimm_seeing'])\n",
"\n",
"# Create a Dataframe with the data retrieved\n",
"fe_dt = pd.DataFrame(feList['dimm_seeing'], index=feList['timestamp'], columns=['dimm_seeing'])"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-27T03:37:58.597986",
"start_time": "2017-05-27T03:37:58.574661"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"10\n"
]
},
{
"data": {
"text/html": [
"
\n",
"
\n",
" \n",
" \n",
" | \n",
" dimm_seeing | \n",
"
\n",
" \n",
" \n",
" \n",
" 2017-04-28 03:36:57 | \n",
" 0.542 | \n",
"
\n",
" \n",
" 2017-04-28 03:41:57 | \n",
" 0.570 | \n",
"
\n",
" \n",
" 2017-04-28 03:43:16 | \n",
" 0.527 | \n",
"
\n",
" \n",
" 2017-04-28 03:58:23 | \n",
" 0.454 | \n",
"
\n",
" \n",
" 2017-04-28 04:03:35 | \n",
" 0.439 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" dimm_seeing\n",
"2017-04-28 03:36:57 0.542\n",
"2017-04-28 03:41:57 0.570\n",
"2017-04-28 03:43:16 0.527\n",
"2017-04-28 03:58:23 0.454\n",
"2017-04-28 04:03:35 0.439"
]
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(len(fe_dt))\n",
"fe_dt.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Increased size"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We saw before that the default size returns only 10 hits. Let's increase that to 1000 and loop over the search to get all possible hits."
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-27T03:35:31.611742",
"start_time": "2017-05-27T03:34:55.980160"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 1000\n",
"Scrolling...\n",
"scroll size: 459\n",
"Scrolling...\n",
"scroll size: 0\n",
"311918\n"
]
}
],
"source": [
"feList = { 'timestamp': [], 'dimm_seeing': []}\n",
"\n",
"# Initialize the scroll\n",
"results = es.search(index = 'asm',doc_type = 'dimm',scroll = '2m',size = 1000)\n",
"for r in results['hits']['hits']:\n",
" feList['timestamp'].append(dateutil.parser.parse(r['_source']['@timestamp'], ignoretz=True))\n",
" feList['dimm_seeing'].append(r['_source']['dimm_seeing'])\n",
"\n",
"sid = results['_scroll_id']\n",
"scroll_size = results['hits']['total']\n",
"total=scroll_size\n",
"# Start scrolling\n",
"while (scroll_size > 0):\n",
" print(\"Scrolling...\")\n",
" results = es.scroll(scroll_id = sid, scroll = '2m')\n",
" # Update the scroll ID\n",
" sid = results['_scroll_id']\n",
" # Get the number of results that we returned in the last scroll\n",
" scroll_size = len(results['hits']['hits'])\n",
" print(\"scroll size: {0:d}\".format(scroll_size))\n",
" # Do something with the obtained page\n",
" for r in results['hits']['hits']:\n",
" feList['timestamp'].append(dateutil.parser.parse(r['_source']['@timestamp'], ignoretz=True))\n",
" feList['dimm_seeing'].append(r['_source']['dimm_seeing'])\n",
" total+=scroll_size\n",
"print(total)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-27T03:38:09.952098",
"start_time": "2017-05-27T03:38:09.932079"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"10\n"
]
},
{
"data": {
"text/html": [
"\n",
"
\n",
" \n",
" \n",
" | \n",
" dimm_seeing | \n",
"
\n",
" \n",
" \n",
" \n",
" 2017-04-28 03:36:57 | \n",
" 0.542 | \n",
"
\n",
" \n",
" 2017-04-28 03:41:57 | \n",
" 0.570 | \n",
"
\n",
" \n",
" 2017-04-28 03:43:16 | \n",
" 0.527 | \n",
"
\n",
" \n",
" 2017-04-28 03:58:23 | \n",
" 0.454 | \n",
"
\n",
" \n",
" 2017-04-28 04:03:35 | \n",
" 0.439 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" dimm_seeing\n",
"2017-04-28 03:36:57 0.542\n",
"2017-04-28 03:41:57 0.570\n",
"2017-04-28 03:43:16 0.527\n",
"2017-04-28 03:58:23 0.454\n",
"2017-04-28 04:03:35 0.439"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a Dataframe with the data retrieved\n",
"fe_dt = pd.DataFrame(feList['dimm_seeing'], index=feList['timestamp'], columns=['dimm_seeing'])\n",
"print(len(fe_dt))\n",
"fe_dt.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Advanced request"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## First trial using es.search"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-26T22:53:58.070199",
"start_time": "2017-05-26T22:53:57.908612"
},
"code_folding": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"458763 documents found\n"
]
}
],
"source": [
"query={\n",
" \"size\": 0,\n",
" \"query\": {\n",
" \"bool\": {\n",
" \"must\": [\n",
" {\n",
" \"query_string\": {\n",
" \"analyze_wildcard\": True,\n",
" \"query\": \"*\"\n",
" }\n",
" },\n",
" {\n",
" \"range\": {\n",
" \"@timestamp\": {\n",
" \"gte\": 1432666102379,\n",
" \"lte\": 1495828102379,\n",
" \"format\": \"epoch_millis\"\n",
" }\n",
" }\n",
" }\n",
" ],\n",
" \"must_not\": []\n",
" }\n",
" },\n",
" \"_source\": {\n",
" \"excludes\": []\n",
" },\n",
" \"aggs\": {\n",
" \"2\": {\n",
" \"date_histogram\": {\n",
" \"field\": \"@timestamp\",\n",
" \"interval\": \"1w\",\n",
" \"time_zone\": \"America/Santiago\",\n",
" \"min_doc_count\": 1\n",
" },\n",
" \"aggs\": {\n",
" \"1\": {\n",
" \"avg\": {\n",
" \"field\": \"dimm_seeing\"\n",
" }\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"results = es.search(index=\"asm\", body=query)\n",
"print(\"{0:d} documents found\".format(results['hits']['total']))"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-26T22:54:04.374949",
"start_time": "2017-05-26T22:54:04.332224"
},
"collapsed": true
},
"outputs": [],
"source": [
"feList = { 'timestamp': [], 'dimm_seeing': []}\n",
"keep_fetching = True\n",
"\n",
"count = 0\n",
"while keep_fetching:\n",
" i = 0\n",
" for r in results['hits']['hits']:\n",
" feList['timestamp'].append(dateutil.parser.parse(r['_source']['@timestamp'], ignoretz=True))\n",
" feList['dimm_seeing'].append(r['_source']['dimm_seeing'])\n",
" i += 1\n",
"\n",
" if i == 10000:\n",
" count += i\n",
" #print (count, \"mark...\")\n",
" uri = 'http://134.171.189.13:9200/_search/scroll'\n",
" esBody = \"\"\"\n",
" {{\n",
" \"scroll\": \"1m\",\n",
" \"scroll_id\": \"{}\"\n",
" }}\n",
" \"\"\".format(results['_scroll_id'])\n",
" response = requests.post(uri, esBody)\n",
" results = json.loads(response.text)\n",
" else:\n",
" keep_fetching = False\n",
"\n",
"# Create a Dataframe with the data retrieved\n",
"fe_dt = pd.DataFrame(feList['dimm_seeing'], index=feList['timestamp'], columns=['dimm_seeing'])\n",
"fe_dt['occurrence'] = np.ones(len(fe_dt), dtype=int)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-26T22:54:45.470628",
"start_time": "2017-05-26T22:54:45.463022"
}
},
"outputs": [
{
"data": {
"text/plain": [
"{'hits': [], 'max_score': 0.0, 'total': 458763}"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"results['hits']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Second trial using json"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-27T02:52:21.754414",
"start_time": "2017-05-27T02:52:21.670774"
}
},
"outputs": [],
"source": [
"# Fetching from ES\n",
"# The data will be retrieved in batches of 10k records \n",
"# Only fields requested are the timestamp and dimm_seeing\n",
"esBody = \"\"\"\n",
"{\n",
" \"_source\": [\"@timestamp\", \"dimm_seeing\"],\n",
" \"sort\" : {\n",
" \"@timestamp\": {\"order\": \"asc\"}\n",
" },\n",
" \"query\" :{\n",
" \"query_string\" : {\n",
" \"query\": @timestamp:[2016-01-01 TO now]\"\n",
" }\n",
" }\n",
" ,\"size\": 10000\n",
"}\n",
"\"\"\"\n",
"uri = 'http://134.171.189.13:9200/asm/_search?scroll=1m'\n",
"response = requests.post(uri, esBody)\n",
"results = json.loads(response.text)\n",
"\n",
"feList = { 'timestamp': [], 'dimm_seeing': []}\n",
"keep_fetching = True\n",
"\n",
"count = 0\n",
"while keep_fetching:\n",
" i = 0\n",
" for r in results['hits']['hits']:\n",
" feList['timestamp'].append(dateutil.parser.parse(r['_source']['@timestamp'], ignoretz=True))\n",
" feList['dimm_seeing'].append(r['_source']['dimm_seeing'])\n",
" i += 1\n",
"\n",
" if i == 10000:\n",
" count += i\n",
" #print (count, \"mark...\")\n",
" uri = 'http://134.171.189.13:9200/_search/scroll'\n",
" esBody = \"\"\"\n",
" {{\n",
" \"scroll\": \"1m\",\n",
" \"scroll_id\": \"{}\"\n",
" }}\n",
" \"\"\".format(results['_scroll_id'])\n",
" response = requests.post(uri, esBody)\n",
" results = json.loads(response.text)\n",
" else:\n",
" keep_fetching = False\n",
"\n",
"# Create a Dataframe with the data retrieved\n",
"fe_dt = pd.DataFrame(feList['dimm_seeing'], index=feList['timestamp'], columns=['dimm_seeing'])\n",
"fe_dt['occurrence'] = np.ones(len(fe_dt), dtype=int)\n",
"\n",
"del(feList)\n",
"del(response)\n",
"del(results)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-27T02:54:03.563741",
"start_time": "2017-05-27T02:54:03.556486"
}
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-26T22:49:21.238643",
"start_time": "2017-05-26T22:49:21.226649"
}
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2017-05-26T19:49:28.354869",
"start_time": "2017-05-26T19:49:28.330058"
},
"collapsed": true
},
"outputs": [],
"source": [
"\n"
]
}
],
"metadata": {
"anaconda-cloud": {},
"hide_input": false,
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
},
"latex_envs": {
"LaTeX_envs_menu_present": true,
"autocomplete": true,
"bibliofile": "biblio.bib",
"cite_by": "apalike",
"current_citInitial": 1,
"eqLabelWithNumbers": true,
"eqNumInitial": 1,
"hotkeys": {
"equation": "Ctrl-E",
"itemize": "Ctrl-I"
},
"labels_anchors": false,
"latex_user_defs": false,
"report_style_numbering": false,
"user_envs_cfg": false
},
"toc": {
"colors": {
"hover_highlight": "#DAA520",
"running_highlight": "#FF0000",
"selected_highlight": "#FFD700"
},
"moveMenuLeft": true,
"nav_menu": {
"height": "66px",
"width": "252px"
},
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 4,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": false,
"widenNotebook": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}