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PyMC - Version 2.3.6

Purpose

https://pymc-devs.github.io/pymc/

PyMC is a python module that implements
, including
. Its flexibility and extensibility make it
applicable to a large suite of problems. Along with core
sampling functionality, PyMC includes methods for
summarizing output, plotting, goodness-of-fit and
convergence diagnostics.

2/20


https://pymc-devs.github.io/pymc/

MCMC, Bayesian Statistics

e Metropolis-Hastings algorithm 1970 + increase in
computational power

Citations of Metropolis et al. (1953)

Citations
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MCMC, Bayesian Statistics
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e Problems with correlations and degeneracies between
parameters = development of many new algorithms (Gibbs,
nested sampling etc.)

e Challenge:

to
solve it 20



Marcov Chain Monte Carlo, Bayesian Statistics
class of algorithms used to efficiently sample posterior
distributions

Monte Carlo: Marcov Chain:

Generation of random chain of numbers, with each
Numbers (sample from a number depending on the
distribution) previous number

0:+1 = Normal (6;, 0)
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Marcov Chain Monte Carlo, Bayesian Statistics
class of algorithms used to efficiently sample posterior
distributions

Monte Carlo: Marcov Chain:

Generation of random chain of numbers, with each
Numbers (sample from a number depending on the
distribution) previous number

0:+1 = Normal (6;, 0)

Bayesian Statistics: We are interested in the Probability/Posterior

Distribution of a (set of) parameter(s) 8, which we want to sample

P(Dl6, M)P(6)
P(6|D, M) = ————— (Bayes Theorem)
P(D) w20



Metropolis-Hastings Algorithm
Algorithm to decide weather a new value should be accepted
or not, e.g. the Metropolis Hastings Algorithm

0t+1 = Normal (6;, 0)

P(D|6¢+1,M)P(6¢+1)
_ P(9t+1|Df M) Bayes’Illeorem I tJr;')(D) o _ < (et+1)P(et+1)

P(6¢/D, M) RO £ (6P (61)
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Metropolis-Hastings Algorithm
Algorithm to decide weather a new value should be accepted
or not, e.g. the Metropolis Hastings Algorithm

P(D|6t+1,M)P(6¢+1)
_ P(6t+1|D: M) Bayes'llleorem t+[13(D) = _ 4 (9t+1)P(9t+1)

P(6:ID, M) PO 2 (61) P(6r)

Likelihood function (assumption of
Gaussian errors):

P(D)=/P(X,6)de
6 1 _ (xi—u)z
e 207

LACE i (6) =
hard to compute! (6) |T| i(0) |_| fom02
]
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Metropolis-Hastings Algorithm
Algorithm to decide weather a new value should be accepted
or not, e.g. the Metropolis Hastings Algorithm

P(D|6t+1,M)P(6¢+1)

_ P(9t+1|Dr M) Bayes’Illcorcm P(D) _ < (et+1)P(et+1)
P(6ID, M) POIRE) 2 (6:)P(6r)

9t+1, ifa>1
Ot+1 = )
6, otherwise
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PyMC - Version 2.3.6

Features

e Includes a large suite of well-documented statistical distributions
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PyMC - Version 2.3.6

Features

e Includes a large suite of well-documented statistical distributions

e Creates summaries including tables and plots (Trace, Posterior
Distribution, quantiles etc.)

e Traces can be saved to the disk as plain text, Python pickles, SQLite or
MySQL database, or hdf5 archives (= powerful in combination with
pandas)

e Several convergence diagnostics are available

e Extensible: easily incorporates
. MCMC loops can be embedded in larger
programs, and results can be analyzed with the full power of Python
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PyMC - Version 2.3.6

Comparison with other packages

e emcee: extremely lightweight, easy to use, affine-invariant ensemble
sampling (developed by astronomers)
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PyMC - Version 2.3.6

Comparison with other packages

e emcee: extremely lightweight, easy to use, affine-invariant ensemble
sampling (developed by astronomers)

° : more features than emcee, including built-in support for efficient
sampling of common prior distributions. Metropolis-Hasting ([1]). Version 3 is
independent of fortran, includes Gibbs-Sampling; not fully stable yet.

° : official Python wrapper of the Stan Probabilistic programming
language, which is implemented in C++. Uses a No U-Turn Sampler, which is
more sophisticated than classic Metropolis-Hastings or Gibbs sampling ([1]).
Requires writing non-python code, harder to learn.

° : nested sampling techniques, which are superior for parameter
spaces with strong and non-linear correlations. Written in fortran and C,
python wrapper available:

http://johannesbuchner.github.com/PyMultiNest/
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Outline

2. Absorption Line Fitting
2.1 Absorption Lines in GRB afterglow spectra
2.2 The Voigt Profile
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Absorption Line Fitting
Fitting N Voigt profiles to GRB afterglow spectra

e Voigt Profile(s): (N, b, z) + Continuum, Background

e Popular codes: , ) (x2-based)

e Problems:

non-detections, saturated lines, computationally

expansive when fitting multiple components (b, z - fixed)

Normalized Flux

GRB121024A5 Mnll 2576.8753 at z = 2.3005
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The Model
Voigt Profile in Velocity Space

i=1

me> .
T = m—ecfi;)\ij. ¢ |v— 8} Vo r

def (v, N, b, gamma, f, 10):
# Add an absorption line in velocity space
A = (((np.pi*e**2)/(m e*c))*f*10*1E-13) * (10**N)
tau = A * (v,b/np. (2.0),gamma)

return np.exp(-tau)
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The Model
Voigt Profile in Velocity Space

def (v, N, b, gamma, f, 10):
# Add an absorption line in velocity space
A = (((np.pi*e**2)/(m _e*c))*f*L0*1E-13) * (10**N)
tau = A * (v,b/np. (2.0),gamma)

return np.exp(-tau)

from scipy.special import #Faddeeva function
def (x, sigma, gamma):
#gamma: HWHM of the Lorentzian profile
#sigma: the standard deviation of the Gaussian profile
z = (X + 1j*gamma) / (sigma * np. (2.0))
V = (z).real / (sigma * np. (2.0*np.pi))
return V
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3. Implementation in PyMC
3.1 General Structure
3.2 The Stochastic Class
3.3 The Deterministic Class
3.4 The MCMC sampler
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Implementation in PyMC
General Structure

import pymc, numpy, scipy, matplotlib

def (velocity, flux, flux err, *args, **kwargs):
def (): #Priors on unknown parameters
return
def ( ):
return
data = pymc. ('y val’,mu= , =1.0/(
flux_err*x*2), =flux, =True) #likelihood
return ()
def ( , velocity, flux, flux err):
MDL = pymc. ( (velocity, flux, flux err))
MDL. (iterations=20000, burn_in=15000)

return fit parameters
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Defining the Priors, The Stochastic Class
Variables whose values are not determined by its parents

for i in (1, nvoigts+1l): #Automatic (Iteratively,
Containers)
vO = pymc. ('vo'+ (1), =-400, =400,
="v0'+ (i))
N = pymc. ("N"+str(i),mu=15.0, =1.0/(10**2),
="A’+str(i)
b = pymc. ("b"+ (i),mu=15.0, =1.0/(10**2),
='b’+str(i))
vars dic['b’+ (i)] = b # etc.; Add to dictionary
@pymc. (dtype= ) #Decorator
def ( =1.0, mu=1.0, =0.05, ='BG’'):
if 0.90 <= < 1.10:
return ( , mu, sig)
else:

return -np.inf
13/20



Python Decorators
Modifying functions without rewriting code

def (X, y):
return x + vy
def (X, y):
return x -y
def r(func):
def f(x, y):
before = ()
rv = func(x, y)
after = ()
print after-before
return rv
return f
= r(add)
= r(sub)
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Python Decorators
Modifying functions without rewriting code

def (func):
def f(*args,**kwargs):
before = time()
rv = func(*args, **kwargs)
after = time()
print after-before

return rv
return f
@ #"Decorate" the add function with the timer function
def (x, y):
return x + vy
(G
def (x, y):

return x - vy
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The Physical Model, The Deterministic class
A variable that is entirely determined by its parents

@pymc. (plot=False) #Deterministic Decorator
def (vv,BG, f,gamma, 10,nvoigts,vars dic):

gauss k = (stddev=RES/fwhmsig*ps,mode="
oversample")

flux = np. ( (vv))*BG

for i in (1, nvoigts + 1):
v = vv-vars dic["vO"+ (i)1]
flux *= (v, vars dic["N"+ (1)1,

vars_dic["b"+str(i)], gamma, f, 10)
return np. (flux, gauss k, mode='same’)

y val = pymc. ("y val’,mu= , tau=tau, value=fluxv,
observed=True) #Data with Gaussian errors

return () 5720



Start the MCMC - The MCMC Class

def

(grb, redshift, line, velocity, fluxv, fluxv err,
grb_name, gamma, nvoigts, iterations, burn_in, RES,
velo range, para dic):

MDL = pymc. ( (velocity, fluxv, fluxv_err,
gamma,nvoigts,RES,CSV_LST, velo range, para dic),
='pickle’,dbname="velo fit.pickle’)

MDL.
MDL. (iterations, burn_in)
MDL.db.close()

y min = MDL. ()['multVoigt’][’'quantiles’][2.5]
y max = MDL. ()['multVoigt’]['quantiles’][97.5]
y fit = MDL. ()['multVoigt’]['mean’]

return y min, y max, y fit
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Start the MCMC - The MCMC Class

def (*args, **kwargs):

MDL = pymc. ( (*args, **kwargs))

MDL. (pymc. , MDL.a, proposal sd
=0.05, proposal distribution="Normal’)

MDL. (pymc. , MDL.v0@, proposal sd=
velo range/2.0, proposal distribution='Normal")

MDL. (pymc. , [MDL.N, MDL.
b], scales={MDL.N:1.0, MDL.b:1.0})

MDL. (iterations, burn_in)

y fit = MDL. ()['multVoigt’]['mean’]

N1 mean = MDL. ()I'N1’]['mean’]

return y fit
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Additional Features

e The Potential Class: add probability terms to existing models

(Indicator function)

<2 (6)P(6)-1(JvO1—v02| > 5)

@pymc.
def 1(v01l, v02):
if math. (v01l-v02) > 5:
return 1.0
else:
return -np.inf

e Also: ,
look into this yet)

etc. (I didn’t
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Results

GRB121024A5 Mnll 2576.8753 at z = 2.3005
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Results

Normalized Flux

Observed Wavelength(A)
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