
The PyMC MCMC python package

MCMC Coffee - Vitacura, December 7, 2017
Jan Bolmer

Outline

1. PyMC, MCMC & Bayesian Statistics
1.1 PyMC - Purpose
1.2 Marcov Chain Monte Carlo
1.3 Metropolis-Hastings Algorithm
1.4 PyMC - Features
1.5 PyMC- Comparison to other packages

2. Absorption Line Fitting

3. Implementation in PyMC

1/20

PyMC - Version 2.3.6
Purpose

https://pymc-devs.github.io/pymc/

PyMC is a python module that implements Bayesian
statistical models and fitting algorithms, including Markov
chain Monte Carlo. Its flexibility and extensibility make it
applicable to a large suite of problems. Along with core
sampling functionality, PyMC includes methods for
summarizing output, plotting, goodness-of-fit and
convergence diagnostics.

2/20

https://pymc-devs.github.io/pymc/

MCMC, Bayesian Statistics

• Metropolis-Hastings algorithm 1970 + increase in
computational power

Citations of Metropolis et al. (1953)

3/20

MCMC, Bayesian Statistics

• Problems with correlations and degeneracies between
parameters⇒ development of many new algorithms (Gibbs,
nested sampling etc.)

• Challenge: express problem within the Bayesian framework;
choose the appropriate MCMC method (i.e. Python package) to
solve it 3/20

Marcov Chain Monte Carlo, Bayesian Statistics
class of algorithms used to efficiently sample posterior
distributions

Monte Carlo:
Generation of random
Numbers (sample from a
distribution)

Marcov Chain:
chain of numbers, with each
number depending on the
previous number

θt+1 = Normal (θt, σ)

4/20

Marcov Chain Monte Carlo, Bayesian Statistics
class of algorithms used to efficiently sample posterior
distributions
Monte Carlo:
Generation of random
Numbers (sample from a
distribution)

Marcov Chain:
chain of numbers, with each
number depending on the
previous number

θt+1 = Normal (θt, σ)

Bayesian Statistics: We are interested in the Probability/Posterior
Distribution of a (set of) parameter(s) θ, which we want to sample

P (θ|D,M) =
P (D|θ,M) P (θ)

P (D)
(Bayes Theorem)

4/20

Metropolis-Hastings Algorithm
Algorithm to decide weather a new value should be accepted
or not, e.g. the Metropolis Hastings Algorithm

θt+1 = Normal (θt, σ)

a =
P (θt+1|D,M)

P (θt|D,M)
Bayes Theorem

=
P(D|θt+1,M)P(θt+1)

P(D)
P(D|θt,M)P(θt)

P(D)

=
L (θt+1) P (θt+1)

L (θt) P (θt)

5/20

Metropolis-Hastings Algorithm
Algorithm to decide weather a new value should be accepted
or not, e.g. the Metropolis Hastings Algorithm

a =
P (θt+1|D,M)

P (θt|D,M)
Bayes Theorem

=
P(D|θt+1,M)P(θt+1)

P(D)
P(D|θt,M)P(θt)

P(D)

=
L (θt+1) P (θt+1)

L (θt) P (θt)

P (D) =
∫︁
θ
P (x, θ) dθ

hard to compute!

Likelihood function (assumption of
Gaussian errors):

L (θ) =
∏︁
i

li (θ) =
∏︁
i

1√︁
2πσ2i

e
− (xi−μ)

2

2σ2i

5/20

Metropolis-Hastings Algorithm
Algorithm to decide weather a new value should be accepted
or not, e.g. the Metropolis Hastings Algorithm

a =
P (θt+1|D,M)

P (θt|D,M)
Bayes Theorem

=
P(D|θt+1,M)P(θt+1)

P(D)
P(D|θt,M)P(θt)

P(D)

=
L (θt+1) P (θt+1)

L (θt) P (θt)

θt+1 =

⎧⎨⎩θt+1, if a > 1

θt, otherwise

(Animation!)

5/20

PyMC - Version 2.3.6
Features

• Includes a large suite of well-documented statistical distributions

• Creates summaries including tables and plots (Trace, Posterior
Distribution, quantiles etc.)

• Traces can be saved to the disk as plain text, Python pickles, SQLite or
MySQL database, or hdf5 archives (⇒ powerful in combination with
pandas)

• Several convergence diagnostics are available

• Extensible: easily incorporates custom step methods and unusual
probability distributions. MCMC loops can be embedded in larger
programs, and results can be analyzed with the full power of Python

6/20

https://pymc-devs.github.io/pymc/distributions.html

PyMC - Version 2.3.6
Features

• Includes a large suite of well-documented statistical distributions

• Creates summaries including tables and plots (Trace, Posterior
Distribution, quantiles etc.)

• Traces can be saved to the disk as plain text, Python pickles, SQLite or
MySQL database, or hdf5 archives (⇒ powerful in combination with
pandas)

• Several convergence diagnostics are available

• Extensible: easily incorporates custom step methods and unusual
probability distributions. MCMC loops can be embedded in larger
programs, and results can be analyzed with the full power of Python

6/20

https://pymc-devs.github.io/pymc/distributions.html

PyMC - Version 2.3.6
Features

• Includes a large suite of well-documented statistical distributions

• Creates summaries including tables and plots (Trace, Posterior
Distribution, quantiles etc.)

• Traces can be saved to the disk as plain text, Python pickles, SQLite or
MySQL database, or hdf5 archives (⇒ powerful in combination with
pandas)

• Several convergence diagnostics are available

• Extensible: easily incorporates custom step methods and unusual
probability distributions. MCMC loops can be embedded in larger
programs, and results can be analyzed with the full power of Python

6/20

https://pymc-devs.github.io/pymc/distributions.html

PyMC - Version 2.3.6
Features

• Includes a large suite of well-documented statistical distributions

• Creates summaries including tables and plots (Trace, Posterior
Distribution, quantiles etc.)

• Traces can be saved to the disk as plain text, Python pickles, SQLite or
MySQL database, or hdf5 archives (⇒ powerful in combination with
pandas)

• Several convergence diagnostics are available

• Extensible: easily incorporates custom step methods and unusual
probability distributions. MCMC loops can be embedded in larger
programs, and results can be analyzed with the full power of Python

6/20

https://pymc-devs.github.io/pymc/distributions.html

PyMC - Version 2.3.6
Features

• Includes a large suite of well-documented statistical distributions

• Creates summaries including tables and plots (Trace, Posterior
Distribution, quantiles etc.)

• Traces can be saved to the disk as plain text, Python pickles, SQLite or
MySQL database, or hdf5 archives (⇒ powerful in combination with
pandas)

• Several convergence diagnostics are available

• Extensible: easily incorporates custom step methods and unusual
probability distributions. MCMC loops can be embedded in larger
programs, and results can be analyzed with the full power of Python

6/20

https://pymc-devs.github.io/pymc/distributions.html

PyMC - Version 2.3.6
Comparison with other packages

• emcee: extremely lightweight, easy to use, affine-invariant ensemble
sampling (developed by astronomers)

• PyMC: more features than emcee, including built-in support for efficient
sampling of common prior distributions. Metropolis-Hasting ([1]). Version 3 is
independent of fortran, includes Gibbs-Sampling; not fully stable yet.

• PyStan: official Python wrapper of the Stan Probabilistic programming
language, which is implemented in C++. Uses a No U-Turn Sampler, which is
more sophisticated than classic Metropolis-Hastings or Gibbs sampling ([1]).
Requires writing non-python code, harder to learn.

• MultiNest: nested sampling techniques, which are superior for parameter
spaces with strong and non-linear correlations. Written in fortran and C,
python wrapper available:
http://johannesbuchner.github.com/PyMultiNest/

7/20

http://dfm.io/emcee/current/
http://johannesbuchner.github.com/PyMultiNest/

PyMC - Version 2.3.6
Comparison with other packages

• emcee: extremely lightweight, easy to use, affine-invariant ensemble
sampling (developed by astronomers)

• PyMC: more features than emcee, including built-in support for efficient
sampling of common prior distributions. Metropolis-Hasting ([1]). Version 3 is
independent of fortran, includes Gibbs-Sampling; not fully stable yet.

• PyStan: official Python wrapper of the Stan Probabilistic programming
language, which is implemented in C++. Uses a No U-Turn Sampler, which is
more sophisticated than classic Metropolis-Hastings or Gibbs sampling ([1]).
Requires writing non-python code, harder to learn.

• MultiNest: nested sampling techniques, which are superior for parameter
spaces with strong and non-linear correlations. Written in fortran and C,
python wrapper available:
http://johannesbuchner.github.com/PyMultiNest/

7/20

http://dfm.io/emcee/current/
http://johannesbuchner.github.com/PyMultiNest/

PyMC - Version 2.3.6
Comparison with other packages

• emcee: extremely lightweight, easy to use, affine-invariant ensemble
sampling (developed by astronomers)

• PyMC: more features than emcee, including built-in support for efficient
sampling of common prior distributions. Metropolis-Hasting ([1]). Version 3 is
independent of fortran, includes Gibbs-Sampling; not fully stable yet.

• PyStan: official Python wrapper of the Stan Probabilistic programming
language, which is implemented in C++. Uses a No U-Turn Sampler, which is
more sophisticated than classic Metropolis-Hastings or Gibbs sampling ([1]).
Requires writing non-python code, harder to learn.

• MultiNest: nested sampling techniques, which are superior for parameter
spaces with strong and non-linear correlations. Written in fortran and C,
python wrapper available:
http://johannesbuchner.github.com/PyMultiNest/

7/20

http://dfm.io/emcee/current/
http://johannesbuchner.github.com/PyMultiNest/

PyMC - Version 2.3.6
Comparison with other packages

• emcee: extremely lightweight, easy to use, affine-invariant ensemble
sampling (developed by astronomers)

• PyMC: more features than emcee, including built-in support for efficient
sampling of common prior distributions. Metropolis-Hasting ([1]). Version 3 is
independent of fortran, includes Gibbs-Sampling; not fully stable yet.

• PyStan: official Python wrapper of the Stan Probabilistic programming
language, which is implemented in C++. Uses a No U-Turn Sampler, which is
more sophisticated than classic Metropolis-Hastings or Gibbs sampling ([1]).
Requires writing non-python code, harder to learn.

• MultiNest: nested sampling techniques, which are superior for parameter
spaces with strong and non-linear correlations. Written in fortran and C,
python wrapper available:
http://johannesbuchner.github.com/PyMultiNest/

7/20

http://dfm.io/emcee/current/
http://johannesbuchner.github.com/PyMultiNest/

Outline

1. PyMC, MCMC & Bayesian Statistics

2. Absorption Line Fitting
2.1 Absorption Lines in GRB afterglow spectra
2.2 The Voigt Profile

3. Implementation in PyMC

8/20

Absorption Line Fitting
Fitting N Voigt profiles to GRB afterglow spectra

• Voigt Profile(s): (N, b, z) + Continuum, Background

• Popular codes: VPFIT, autoVP, FITLYMAN/MIDAS (χ2-based)

• Problems: non-detections, saturated lines, computationally
expansive when fitting multiple components (b, z - fixed)

400 300 200 100 0 100 200 300 400
Velocity (km/s)

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

No
rm

al
ize

dF
lu

x

GRB121024A5 MnII 2576.8753 at z = 2.3005

Observed

9/20

The Model
Voigt Profile in Velocity Space

Fmodel = Fcont ·

nvoigt∏︁
i=1

·e−τi

τi =
πe2

mec
fijλij Ni · ϕ

(︃
v − v0i ,

bi
p
2
,

)︃

def add_abs_velo(v, N, b, gamma, f, l0):
Add an absorption line in velocity space
A = (((np.pi*e**2)/(m_e*c))*f*l0*1E-13) * (10**N)
tau = A * voigt(v,b/np.sqrt(2.0),gamma)

return np.exp(-tau)

10/20

The Model
Voigt Profile in Velocity Space

def add_abs_velo(v, N, b, gamma, f, l0):
Add an absorption line in velocity space
A = (((np.pi*e**2)/(m_e*c))*f*l0*1E-13) * (10**N)
tau = A * voigt(v,b/np.sqrt(2.0),gamma)

return np.exp(-tau)

from scipy.special import wofz #Faddeeva function
def voigt(x, sigma, gamma):

#gamma: HWHM of the Lorentzian profile
#sigma: the standard deviation of the Gaussian profile
z = (x + 1j*gamma) / (sigma * np.sqrt(2.0))
V = wofz(z).real / (sigma * np.sqrt(2.0*np.pi))
return V

10/20

Outline

1. PyMC, MCMC & Bayesian Statistics

2. Absorption Line Fitting

3. Implementation in PyMC
3.1 General Structure
3.2 The Stochastic Class
3.3 The Deterministic Class
3.4 The MCMC sampler

11/20

Implementation in PyMC
General Structure

import pymc, numpy, scipy, matplotlib
def model(velocity, flux, flux_err, *args, **kwargs):

def priors(): #Priors on unknown parameters
return priors

def physical_model(priors):
return model

data = pymc.Normal(’y_val’,mu=physical_model, tau=1.0/(
flux_err**2),value=flux,observed=True) #likelihood

return locals()

def mcmc(model, velocity, flux, flux_err):
MDL = pymc.MCMC(model(velocity, flux, flux_err))
MDL.sample(iterations=20000, burn_in=15000)

return fit_parameters
12/20

Defining the Priors, The Stochastic Class
Variables whose values are not determined by its parents

for i in range(1, nvoigts+1): #Automatic (Iteratively,
Containers)
v0 = pymc.Uniform(’v0’+str(i),lower=-400,upper=400,

doc=’v0’+str(i))
N = pymc.Normal(’N’+str(i),mu=15.0,tau=1.0/(10**2),

doc=’A’+str(i)
b = pymc.Normal(’b’+str(i),mu=15.0,tau=1.0/(10**2),

doc=’b’+str(i))
vars_dic[’b’+str(i)] = b # etc.; Add to dictionary

@pymc.stochastic(dtype=float) #Decorator
def BG(value=1.0, mu=1.0, dev=0.05, doc=’BG’):

if 0.90 <= value < 1.10:
return gauss(value, mu, sig)

else:
return -np.inf

13/20

Python Decorators
Modifying functions without rewriting code

def add(x, y):
return x + y

def sub(x, y):
return x - y

def timer(func):
def f(x, y):

before = time()
rv = func(x, y)
after = time()
print after-before
return rv

return f
add = timer(add)
sub = timer(sub)

14/20

Python Decorators
Modifying functions without rewriting code

def timer(func):
def f(*args,**kwargs):

before = time()
rv = func(*args,**kwargs)
after = time()
print after-before
return rv

return f
@timer #"Decorate" the add function with the timer function
def add(x, y):

return x + y
@timer
def sub(x, y):

return x - y
14/20

The Physical Model, The Deterministic class
A variable that is entirely determined by its parents

@pymc.deterministic(plot=False) #Deterministic Decorator
def multVoigt(vv,BG,f,gamma,l0,nvoigts,vars_dic):

gauss_k = Gaussian1DKernel(stddev=RES/fwhmsig*ps,mode="
oversample")

flux = np.ones(len(vv))*BG
for i in range(1, nvoigts + 1):

v = vv-vars_dic["v0"+str(i)]
flux *= add_abs_velo(v, vars_dic["N"+str(i)],

vars_dic["b"+str(i)], gamma, f, l0)
return np.convolve(flux, gauss_k, mode=’same’)

y_val = pymc.Normal(’y_val’,mu=multVoigt,tau=tau,value=fluxv,
observed=True) #Data with Gaussian errors

return locals()
15/20

Start the MCMC - The MCMC Class
def mcmc(grb, redshift, line, velocity, fluxv, fluxv_err,

grb_name, gamma, nvoigts, iterations, burn_in, RES,
velo_range, para_dic):

MDL = pymc.MCMC(mult_voigts(velocity,fluxv,fluxv_err,
gamma,nvoigts,RES,CSV_LST, velo_range, para_dic),
db=’pickle’,dbname=’velo_fit.pickle’)

MDL.db
MDL.sample(iterations, burn_in)
MDL.db.close()

y_min = MDL.stats()[’multVoigt’][’quantiles’][2.5]
y_max = MDL.stats()[’multVoigt’][’quantiles’][97.5]
y_fit = MDL.stats()[’multVoigt’][’mean’]

return y_min, y_max, y_fit 16/20

Start the MCMC - The MCMC Class

def mcmc(*args, **kwargs):

MDL = pymc.MCMC(mult_voigts(*args, **kwargs))

MDL.use_step_method(pymc.Metropolis, MDL.a, proposal_sd
=0.05, proposal_distribution=’Normal’)

MDL.use_step_method(pymc.Metropolis, MDL.v0, proposal_sd=
velo_range/2.0, proposal_distribution=’Normal’)

MDL.use_step_method(pymc.AdaptiveMetropolis, [MDL.N, MDL.
b], scales={MDL.N:1.0, MDL.b:1.0})

MDL.sample(iterations, burn_in)

y_fit = MDL.stats()[’multVoigt’][’mean’]
N1_mean = MDL.stats()[’N1’][’mean’]

return y_fit
16/20

Additional Features

• The Potential Class: add probability terms to existing models
(Indicator function)

L (θ) P (θ) · I (|v01− v02| > 5)

@pymc.potential
def I(v01, v02):

if math.abs(v01-v02) > 5:
return 1.0

else:
return -np.inf

• Also: Graphing Models, User-defined step methods etc. (I didn’t
look into this yet)

17/20

Results

400 300 200 100 0 100 200 300 400
Velocity (km/s)

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

No
rm

al
ize

dF
lu

x b
=

26
.1

6

N
=

13
.1

5

b
=

21
.0

6N
=

13
.1

b
=

20
.0

N
=

12
.7

3
b

=
21

.9
8

N
=

13
.1

7
b

=
35

.0
1

N
=

12
.8

4

GRB121024A5 MnII 2576.8753 at z = 2.3005

Voigt1
Voigt2
Voigt3
Voigt4

Voigt5
Fit
Observed

18/20

Results

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

dF
lu

x

3940 3950 3960 3970 3980 3990 4000

Observed Wavelength(Å)

0

1

2
SIV ClII

ClII
ArI

FeIIa
FeIIb

FeIIb

J1
J0J5

J4J4
J3

J3J2
J5

J2
J1

J1J0
J5

J4

Fit
Data

3870 3880 3890 3900 3910 3920 3930

0

1

2 OIa

OIb ArINiIIb
NiIIb

NiIIb

NiIIb

J4
J3J3

J2
J5

J2J1
J1

J0
J5

J4J4
J3J3 Ly

, 2
.23

1

Ly
, 2

.22
9

I
II
III

19/20

Bibliography

Thanks for your attention!

[1] http://jakevdp.github.io/blog/2014/06/14/
frequentism-and-bayesianism-4-bayesian-in-python/

[2] Sanjib Sharma.Markov Chain Monte Carlo Methods for Bayesian
Data Analysis in Astronomy. Annual Review of Astronomy and
Astrophysics, 2017.

20/20

http://jakevdp.github.io/blog/2014/06/14/frequentism-and-bayesianism-4-bayesian-in-python/
http://jakevdp.github.io/blog/2014/06/14/frequentism-and-bayesianism-4-bayesian-in-python/

	PyMC, MCMC & Bayesian Statistics
	PyMC - Purpose
	Marcov Chain Monte Carlo
	Metropolis-Hastings Algorithm
	PyMC - Features
	PyMC- Comparison to other packages

	Absorption Line Fitting
	Absorption Lines in GRB afterglow spectra
	The Voigt Profile

	Implementation in PyMC
	General Structure
	The Stochastic Class
	The Deterministic Class
	The MCMC sampler

