The PyMC MCMC python package

oo

MCMC Coffee - Vitacura, December 7, 2017

Jan Bolmer

Outline

1. PyMC, MCMC & Bayesian Statistics
1.1 PyMC - Purpose
1.2 Marcov Chain Monte Carlo
1.3 Metropolis-Hastings Algorithm
1.4 PyMC - Features
1.5 PyMC- Comparison to other packages

1/20

PyMC - Version 2.3.6

Purpose

https://pymc-devs.github.io/pymc/

PyMC is a python module that implements
, including
. Its flexibility and extensibility make it
applicable to a large suite of problems. Along with core
sampling functionality, PyMC includes methods for
summarizing output, plotting, goodness-of-fit and
convergence diagnostics.

2/20

https://pymc-devs.github.io/pymc/

MCMC, Bayesian Statistics

e Metropolis-Hastings algorithm 1970 + increase in
computational power

Citations of Metropolis et al. (1953)

Citations

3/20

MCMC, Bayesian Statistics

B
e
K]
i
>
3
@
o
£
£
I3
g
c
o
S
2
k]
&2
£
£
<

Articles containing “MCMC” (%)

0.
2000 2005 2010 2000 2005 2010
Year of publication Year of publication

ﬂ

e Problems with correlations and degeneracies between
parameters = development of many new algorithms (Gibbs,
nested sampling etc.)

e Challenge:

to
solve it 20

Marcov Chain Monte Carlo, Bayesian Statistics
class of algorithms used to efficiently sample posterior
distributions

Monte Carlo: Marcov Chain:

Generation of random chain of numbers, with each
Numbers (sample from a number depending on the
distribution) previous number

0:+1 = Normal (6;, 0)

4/20

Marcov Chain Monte Carlo, Bayesian Statistics
class of algorithms used to efficiently sample posterior
distributions

Monte Carlo: Marcov Chain:

Generation of random chain of numbers, with each
Numbers (sample from a number depending on the
distribution) previous number

0:+1 = Normal (6;, 0)

Bayesian Statistics: We are interested in the Probability/Posterior

Distribution of a (set of) parameter(s) 8, which we want to sample

P(Dl6, M)P(6)
P(6|D, M) = ————— (Bayes Theorem)
P(D) w20

Metropolis-Hastings Algorithm
Algorithm to decide weather a new value should be accepted
or not, e.g. the Metropolis Hastings Algorithm

0t+1 = Normal (6;, 0)

P(D|6¢+1,M)P(6¢+1)
_ P(9t+1|Df M) Bayes’Illeorem I tJr;')(D) o _ < (et+1)P(et+1)

P(6¢/D, M) RO £ (6P (61)

5/20

Metropolis-Hastings Algorithm
Algorithm to decide weather a new value should be accepted
or not, e.g. the Metropolis Hastings Algorithm

P(D|6t+1,M)P(6¢+1)
_ P(6t+1|D: M) Bayes'llleorem t+[13(D) = _ 4 (9t+1)P(9t+1)

P(6:ID, M) PO 2 (61) P(6r)

Likelihood function (assumption of
Gaussian errors):

P(D)=/P(X,6)de
6 1 _ (xi—u)z
e 207

LACE i (6) =
hard to compute! (6) |T| i(0) |_| fom02
]

5/20

Metropolis-Hastings Algorithm
Algorithm to decide weather a new value should be accepted
or not, e.g. the Metropolis Hastings Algorithm

P(D|6t+1,M)P(6¢+1)

_ P(9t+1|Dr M) Bayes’Illcorcm P(D) _ < (et+1)P(et+1)
P(6ID, M) POIRE) 2 (6:)P(6r)

9t+1, ifa>1
Ot+1 =)
6, otherwise

5/20

PyMC - Version 2.3.6

Features

e Includes a large suite of well-documented statistical distributions

6/20

https://pymc-devs.github.io/pymc/distributions.html

PyMC - Version 2.3.6

Features

e Includes a large suite of well-documented statistical distributions

e Creates summaries including tables and plots (Trace, Posterior
Distribution, quantiles etc.)

6/20

https://pymc-devs.github.io/pymc/distributions.html

PyMC - Version 2.3.6

Features

e Includes a large suite of well-documented statistical distributions

e Creates summaries including tables and plots (Trace, Posterior
Distribution, quantiles etc.)

e Traces can be saved to the disk as plain text, Python pickles, SQLite or
MySQL database, or hdf5 archives (= powerful in combination with
pandas)

6/20

https://pymc-devs.github.io/pymc/distributions.html

PyMC - Version 2.3.6

Features

e Includes a large suite of well-documented statistical distributions

e Creates summaries including tables and plots (Trace, Posterior
Distribution, quantiles etc.)

e Traces can be saved to the disk as plain text, Python pickles, SQLite or
MySQL database, or hdf5 archives (= powerful in combination with
pandas)

e Several convergence diagnostics are available

6/20

https://pymc-devs.github.io/pymc/distributions.html

PyMC - Version 2.3.6

Features

e Includes a large suite of well-documented statistical distributions

e Creates summaries including tables and plots (Trace, Posterior
Distribution, quantiles etc.)

e Traces can be saved to the disk as plain text, Python pickles, SQLite or
MySQL database, or hdf5 archives (= powerful in combination with
pandas)

e Several convergence diagnostics are available

e Extensible: easily incorporates
. MCMC loops can be embedded in larger
programs, and results can be analyzed with the full power of Python

6/20

https://pymc-devs.github.io/pymc/distributions.html

PyMC - Version 2.3.6

Comparison with other packages

e emcee: extremely lightweight, easy to use, affine-invariant ensemble
sampling (developed by astronomers)

7/20

http://dfm.io/emcee/current/
http://johannesbuchner.github.com/PyMultiNest/

PyMC - Version 2.3.6

Comparison with other packages

e emcee: extremely lightweight, easy to use, affine-invariant ensemble
sampling (developed by astronomers)
° : more features than emcee, including built-in support for efficient

sampling of common prior distributions. Metropolis-Hasting ([1]). Version 3 is
independent of fortran, includes Gibbs-Sampling; not fully stable yet.

7/20

http://dfm.io/emcee/current/
http://johannesbuchner.github.com/PyMultiNest/

PyMC - Version 2.3.6

Comparison with other packages

e emcee: extremely lightweight, easy to use, affine-invariant ensemble
sampling (developed by astronomers)

° : more features than emcee, including built-in support for efficient
sampling of common prior distributions. Metropolis-Hasting ([1]). Version 3 is
independent of fortran, includes Gibbs-Sampling; not fully stable yet.

° : official Python wrapper of the Stan Probabilistic programming
language, which is implemented in C++. Uses a No U-Turn Sampler, which is
more sophisticated than classic Metropolis-Hastings or Gibbs sampling ([1]).
Requires writing non-python code, harder to learn.

7/20

http://dfm.io/emcee/current/
http://johannesbuchner.github.com/PyMultiNest/

PyMC - Version 2.3.6

Comparison with other packages

e emcee: extremely lightweight, easy to use, affine-invariant ensemble
sampling (developed by astronomers)

° : more features than emcee, including built-in support for efficient
sampling of common prior distributions. Metropolis-Hasting ([1]). Version 3 is
independent of fortran, includes Gibbs-Sampling; not fully stable yet.

° : official Python wrapper of the Stan Probabilistic programming
language, which is implemented in C++. Uses a No U-Turn Sampler, which is
more sophisticated than classic Metropolis-Hastings or Gibbs sampling ([1]).
Requires writing non-python code, harder to learn.

° : nested sampling techniques, which are superior for parameter
spaces with strong and non-linear correlations. Written in fortran and C,
python wrapper available:

http://johannesbuchner.github.com/PyMultiNest/
7/20

http://dfm.io/emcee/current/
http://johannesbuchner.github.com/PyMultiNest/

Outline

2. Absorption Line Fitting
2.1 Absorption Lines in GRB afterglow spectra
2.2 The Voigt Profile

8/20

Absorption Line Fitting
Fitting N Voigt profiles to GRB afterglow spectra

e Voigt Profile(s): (N, b, z) + Continuum, Background

e Popular codes: ,) (x2-based)

e Problems:

non-detections, saturated lines, computationally

expansive when fitting multiple components (b, z - fixed)

Normalized Flux

GRB121024A5 Mnll 2576.8753 at z = 2.3005

—- 4+ i*u' "“:“-‘h ﬁ,,«, '“ - N“ *ﬁ‘
T " A Wt & WY W§
b #, "™ r
LK) .
L YA O
4 (Y "
L
(]
T T T T T T T T T
-400 -300 -200 -100 0 100 200 300 400 9/20

Velocity (km/s)

The Model
Voigt Profile in Velocity Space

i=1

me> .
T = m—ecfi;)\ij. ¢ |v— 8} Vo r

def (v, N, b, gamma, f, 10):
Add an absorption line in velocity space
A = (((np.pi*e**2)/(m e*c))*f*10*1E-13) * (10**N)
tau = A * (v,b/np. (2.0),gamma)

return np.exp(-tau)

10/20

The Model
Voigt Profile in Velocity Space

def (v, N, b, gamma, f, 10):
Add an absorption line in velocity space
A = (((np.pi*e**2)/(m _e*c))*f*L0*1E-13) * (10**N)
tau = A * (v,b/np. (2.0),gamma)

return np.exp(-tau)

from scipy.special import #Faddeeva function
def (x, sigma, gamma):
#gamma: HWHM of the Lorentzian profile
#sigma: the standard deviation of the Gaussian profile
z = (X + 1j*gamma) / (sigma * np. (2.0))
V = (z).real / (sigma * np. (2.0*np.pi))
return V

10/20

Outline

3. Implementation in PyMC
3.1 General Structure
3.2 The Stochastic Class
3.3 The Deterministic Class
3.4 The MCMC sampler

11/20

Implementation in PyMC
General Structure

import pymc, numpy, scipy, matplotlib

def (velocity, flux, flux err, *args, **kwargs):
def (): #Priors on unknown parameters
return
def ():
return
data = pymc. ('y val’,mu= , =1.0/(
flux_err*x*2), =flux, =True) #likelihood
return ()
def (, velocity, flux, flux err):
MDL = pymc. ((velocity, flux, flux err))
MDL. (iterations=20000, burn_in=15000)

return fit parameters
12/20

Defining the Priors, The Stochastic Class
Variables whose values are not determined by its parents

for i in (1, nvoigts+1l): #Automatic (Iteratively,
Containers)
vO = pymc. ('vo'+ (1), =-400, =400,
="v0'+ (i))
N = pymc. ("N"+str(i),mu=15.0, =1.0/(10**2),
="A’+str(i)
b = pymc. ("b"+ (i),mu=15.0, =1.0/(10**2),
='b’+str(i))
vars dic['b’+ (i)] = b # etc.; Add to dictionary
@pymc. (dtype=) #Decorator
def (=1.0, mu=1.0, =0.05, ='BG’'):
if 0.90 <= < 1.10:
return (, mu, sig)
else:

return -np.inf
13/20

Python Decorators
Modifying functions without rewriting code

def (X, y):
return x + vy
def (X, y):
return x -y
def r(func):
def f(x, y):
before = ()
rv = func(x, y)
after = ()
print after-before
return rv
return f
= r(add)
= r(sub)

14/20

Python Decorators
Modifying functions without rewriting code

def (func):
def f(*args,**kwargs):
before = time()
rv = func(*args, **kwargs)
after = time()
print after-before

return rv
return f
@ #"Decorate" the add function with the timer function
def (x, y):
return x + vy
(G
def (x, y):

return x - vy

14/20

The Physical Model, The Deterministic class
A variable that is entirely determined by its parents

@pymc. (plot=False) #Deterministic Decorator
def (vv,BG, f,gamma, 10,nvoigts,vars dic):

gauss k = (stddev=RES/fwhmsig*ps,mode="
oversample")

flux = np. ((vv))*BG

for i in (1, nvoigts + 1):
v = vv-vars dic["vO"+ (i)1]
flux *= (v, vars dic["N"+ (1)1,

vars_dic["b"+str(i)], gamma, f, 10)
return np. (flux, gauss k, mode='same’)

y val = pymc. ("y val’,mu= , tau=tau, value=fluxv,
observed=True) #Data with Gaussian errors

return () 5720

Start the MCMC - The MCMC Class

def

(grb, redshift, line, velocity, fluxv, fluxv err,
grb_name, gamma, nvoigts, iterations, burn_in, RES,
velo range, para dic):

MDL = pymc. ((velocity, fluxv, fluxv_err,
gamma,nvoigts,RES,CSV_LST, velo range, para dic),
='pickle’,dbname="velo fit.pickle’)

MDL.
MDL. (iterations, burn_in)
MDL.db.close()

y min = MDL. ()['multVoigt’][’'quantiles’][2.5]
y max = MDL. ()['multVoigt’]['quantiles’][97.5]
y fit = MDL. ()['multVoigt’]['mean’]

return y min, y max, y fit

16/20

Start the MCMC - The MCMC Class

def (*args, **kwargs):

MDL = pymc. ((*args, **kwargs))

MDL. (pymc. , MDL.a, proposal sd
=0.05, proposal distribution="Normal’)

MDL. (pymc. , MDL.v0@, proposal sd=
velo range/2.0, proposal distribution='Normal")

MDL. (pymc. , [MDL.N, MDL.
b], scales={MDL.N:1.0, MDL.b:1.0})

MDL. (iterations, burn_in)

y fit = MDL. ()['multVoigt’]['mean’]

N1 mean = MDL. ()I'N1’]['mean’]

return y fit
16/20

Additional Features

e The Potential Class: add probability terms to existing models

(Indicator function)

<2 (6)P(6)-1(JvO1—v02| > 5)

@pymc.
def 1(v01l, v02):
if math. (v01l-v02) > 5:
return 1.0
else:
return -np.inf

e Also: ,
look into this yet)

etc. (I didn’t

17/20

Results

GRB121024A5 Mnll 2576.8753 at z = 2.3005

1.50 4

1.25 4

0.75 4

0.50 +

0.25 4

Normalized Flux

0.00

Voigt1 —— Voigt5
Voigt2 --- Fit
Voigt3 ¢ Observed
Voigt4

-0.25 A

-0.50 T

T T T T T T T T
-400 -300 -200 -100 O 100 200 300 400
Velocity (km/s)

18/20

Results

Normalized Flux

Observed Wavelength(A)

19/20

Bibliography

Thanks for your attention!

[1] http://jakevdp.github.io/blog/2014/06/14/
frequentism-and-bayesianism-4-bayesian-in-python/

[2] Sanjib Sharma. Markov Chain Monte Carlo Methods for Bayesian
Data Analysis in Astronomy. Annual Review of Astronomy and
Astrophysics, 2017.

20/20

http://jakevdp.github.io/blog/2014/06/14/frequentism-and-bayesianism-4-bayesian-in-python/
http://jakevdp.github.io/blog/2014/06/14/frequentism-and-bayesianism-4-bayesian-in-python/

	PyMC, MCMC & Bayesian Statistics
	PyMC - Purpose
	Marcov Chain Monte Carlo
	Metropolis-Hastings Algorithm
	PyMC - Features
	PyMC- Comparison to other packages

	Absorption Line Fitting
	Absorption Lines in GRB afterglow spectra
	The Voigt Profile

	Implementation in PyMC
	General Structure
	The Stochastic Class
	The Deterministic Class
	The MCMC sampler

