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Why have another technique when periodograms already
exist? Right?

The goal: find a planetary signal in noisy time-series data M. Tuomi
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Do periodograms work? Forget about residual analyses.

Anglada-Escudé & Tuomi, 2015 M. Tuomi
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Searching for one signal is possible.

1. Several data sets that need to be modelled with non-linear models.

2. Searches for several signals.

3. The problem becomes highly multimodal and high-dimensional.

A typical statistical model for RV time-series:

mi,l = γl + γ̇ti + fk(ti) + ϵi,l +

q
∑

j=1

cj,lξj,i,l +

p
∑

j=1

φj,l exp

{

ti−j − ti

τl

}

ri−j,l, (1)

where

fk(ti) =

k
∑

j=1

Kj

[

cos(ωj + νj(ti, Pj,M0,j)) + ej cos(ωj)
]

(2)

Complex models: Tuomi et al. (2013); Feng et al. (2016) M. Tuomi
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MCMC samplings can do the trick.

Anglada-Escudé et al. (2016) M. Tuomi
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MCMC samplings can do the trick.

1. Bonfils et al. (2013) reported three planet candidates orbiting GJ 163. This was based
on 153 HARPS RVs.

Tuomi & Anglada-Escudé (2013) M. Tuomi
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planet candidates with only 55 of the HARPS RVs available.

Tuomi & Anglada-Escudé (2013) M. Tuomi
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planet candidates with only 55 of the HARPS RVs available.

3. Thanks to fantastic ESO archives the data was available!

Tuomi & Anglada-Escudé (2013) M. Tuomi
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MCMC samplings can do the trick.

1. Bonfils et al. (2013) reported three planet candidates orbiting GJ 163. This was based
on 153 HARPS RVs.

2. In the same issue of A&A, Tuomi & Anglada-Escudé independently reported the same
planet candidates with only 55 of the HARPS RVs available.

3. Thanks to fantastic ESO archives the data was available!

4. Same result based on only ∼ 35% of the data – what made the difference?

5. Contribution from TERRA algorithm (Anglada-Escudé & Butler, 2012) but mostly due
to better sensitivity due to Bayesian approach, and MCMC samplings.

6. Most importantly: Tuomi & Anglada-Escudé were not limited by residual analyses.

Tuomi & Anglada-Escudé (2013) M. Tuomi
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Simple MCMC algorithm

1. Choose an initial state in the parameter space θ ∈ Ω.

2. Choose proposal density.

3. Draw a vector θ′ from the proposal density.

4. Test whether θ′ is accepted.

5. If θ′ is accepted, set θi = θ′ – otherwise set θi = θi−1.

6. Go to 3.

MCMC principle M. Tuomi
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Adaptive Metropolis algorithm.

Adapting proposal density makes it possible to use the information already gathered about
the posterior to enable faster “convergence“.

Assuming Gaussian proposal density, the covariance is updated according to

Cn+1 =
n+1

n
Cn +

s

n

[

nθ̄n−1θ̄
T
n−1 − (n+1)θ̄nθ̄

T
n + θnθ

T
n + ϵI

]

, (3)

Haario et al. (2001); Tuomi et al. (2014) M. Tuomi
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Delayed rejection AM (DRAM) algorithm.

Basic idea: if a proposed vector is rejected, do not give up but propose another one.

Haario et al. (2006) M. Tuomi
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Improving DRAM samplings.

Assume there is a high maximum such that the chain quickly identifies it and gets stuck in
it.

Solution: sample π(θ)β rather than π(θ), where β ∈ (1,0).

This is suitable for signal searches because the transformation retains the positions of the
maxima.

Parameter estimation must be carried out by setting β = 1.

Practical problems M. Tuomi
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Improving DRAM samplings.

Reversible jump modification (Green 1995).

Local optimization.

Parallelization with multiple chains.

Dozens of algorithms exist, each fine-tuned to solve a specific statistical problem.

Practical problems M. Tuomi
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MCMC samplings can do the trick.

Anglada-Escudé et al. (2016) M. Tuomi
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Philosophy

Philosophy M. Tuomi
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Priors make a difference

All parameter values cannot be considered equally probable a priori.
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