Bayesian Inference 2:
Bayesian Model Selection

Blake Pantoja
MCMC Coftfee, Episode 7

Material Reference:
Statistics, Data Mining, and Machine Learning in
Astronomy
Zeljko Ivezié, Andrew J. Connolly, Jacob T. VanderPlas
& Alexander Gray



From Last Time

The Bayes’ theorem

Bayes' rule is not controversial
The frequentist vs. Bayesian controversy sets in when we apply Bayes'
rule to the likelihood function p(D|M) to obtain Bayes' theorem:

Likelihood Prior

Posterior probability

p(DIM, 0, I) p(M, 0]1)

p(M,0ID, I)|= ——IE

p(DI|I)

D = data Evidence
M = model
0 = 61,..., 6x parameters of the model

| = any other information

An "improved belief" is proportional to the product of an "initial belief"
and the probability that the "initial belief" generated the observed data.



Odds Ratio

- Before we assumed model to be true.

What If we can't?

- We consider the odds ratio between two

different models we consider

_ p(My|D, 1)
- p(M|D, I)

21



Evidence and Posterior Probability

- We can integrate over model parameter
space spanned bv theta

E(M) = p(D|M, I):/p(DlM.ﬂ.I)p(ﬂlM. 1)dé
- N Evidence or global likehood
- Evidence != data. From physics literature

- With this and prior probability of model, we
can get the posterior probability of model M
given data D

- These are probabillities, not PDFs!

p(DIM, I)p(M|I)

M|D,I) =
p(M|D,I) >0




Bayes Factor

- Hardest term to calculate: p(D|l). Drops out though:

_ E(My) p(M;| 1) _ p(M|T)
E(M) p(M|I) 2 p(My|I)

- B21 Is the Bayes factor

21

By — IP(D|ME'QE-I)p(QE|ME.I)iiﬂz
2T p(DIM, 01, 1) p(0, M, 1)d6,

- Thetal and Theta2 can be very different parameter
spaces



Interpreting the Odds Ratio

- 021 > 100 : Decisive (100x M2 is more
probable than M1)

- 021 > 10 : Strong
- 021 > 3 : Can't say much



Example: Coin Toss

- M1: known heads probability of b*
- prior is del(b — b*)

- Binomial dist:

NI -
klb. N) = b* (1 — p)NF
p(klb, N) KN R ( )

| b)i(l_b>-\.‘—k
05 = - db.
2! /D (b* 1 —b,

- M2: b unknown. Uniform prior in 0-1 range
- 021 = sqrt(pi/(2N)), k = b*N, b=0.5
- N=10000 needed for 1% precision with odds 1/80 for O21
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b* = 0.5 (fair) and b* = 0.1.

If KIN=0.1, 021 is ~9 for N=10,
021 ~ 263 for N=20

lif b* = k/N and b* = 0.5 we need N>157 for
strong evidence

N=10000 needed for 1% precision with odds
1/80



Hypothesis Testing

- In classical, we reject a null hypothesis based on confidence
intervals

- In Bayesian, we cannot reject without alternate hypothesis!
- Let's consider p(M1) + p(M2) = 1. M1 is “null” hypothesis

- Equal priors:
_ p(D|M,)
~ p(DIMy)

- For coin, let's say that k=16 heads out of N=20 tries

071 = By

- If sigma=2.24, it is 2.7*sig away, above 0.05 confidence interval
leading us to reject.

- In Bayesian, we have alternate hypothesis that there is an unknown
probability

- By comparing, we can O21 of 10 in favor of an unfair coin



Occam's Razor

- Choose the simplest model in fair agreement with data
- Let's say prior pdf is flat in range:
A2 < o< A2, and thus p(plI) = 1/A,

- Data Is more informative than prior when sigma_mu <<
Delta for Gaussian data with width sigma_mu

- Global likelihood:

E(M) =~ /27 LY M) i”‘ .

FE

- E<<LO0 when sigma_mu << Delta_mu



Occam's Razor

- Each parameter has a multiplicative
penalty proportional to sigma/Delta, where
sigma ~ Delta gives no penality
(unconstrained)

- The odds ratio can justify an additional
parameter If the penalty Is offset a larger
maximum likelihood LO or by prior model
probability ratio p(M2|l) / p(M1])



Occam's Razor

- For coin flip example from what we had
before:

o _E0B) o (bﬂ>“ (1—1&9)”‘“
= RS Ta — ,
7 E(My) "\b,) \1-b,
As M2 has a free parameter, we can see

Its favor decrease with posterior PDF
width (sigma)

- It Increases If bO Is far from b*
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